Toric Topology

Download Toric Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821844865
Total Pages : 424 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Toric Topology by : Megumi Harada

Download or read book Toric Topology written by Megumi Harada and published by American Mathematical Soc.. This book was released on 2008 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Toric topology is the study of algebraic, differential, symplectic-geometric, combinatorial, and homotopy-theoretic aspects of a particular class of torus actions whose quotients are highly structured. The combinatorial properties of this quotient and the equivariant topology of the original manifold interact in a rich variety of ways, thus illuminating subtle aspects of both the combinatorics and the equivariant topology. Many of the motivations and guiding principles of the fieldare provided by (though not limited to) the theory of toric varieties in algebraic geometry as well as that of symplectic toric manifolds in symplectic geometry.This volume is the proceedings of the International Conference on Toric Topology held in Osaka in May-June 2006. It contains about 25 research and survey articles written by conference speakers, covering many different aspects of, and approaches to, torus actions, such as those mentioned above. Some of the manuscripts are survey articles, intended to give a broad overview of an aspect of the subject; all manuscripts consciously aim to be accessible to a broad reading audience of students andresearchers interested in the interaction of the subjects involved. We hope that this volume serves as an enticing invitation to this emerging field.

Toric Topology

Download Toric Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 147042214X
Total Pages : 534 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Toric Topology by : Victor M. Buchstaber

Download or read book Toric Topology written by Victor M. Buchstaber and published by American Mathematical Soc.. This book was released on 2015-07-15 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric varieties via the notion of a quasitoric manifold. Discovery of remarkable geometric structures on moment-angle manifolds led to important connections with classical and modern areas of symplectic, Lagrangian, and non-Kaehler complex geometry. A related categorical construction of moment-angle complexes and polyhedral products provides for a universal framework for many fundamental constructions of homotopical topology. The study of polyhedral products is now evolving into a separate subject of homotopy theory. A new perspective on torus actions has also contributed to the development of classical areas of algebraic topology, such as complex cobordism. This book includes many open problems and is addressed to experts interested in new ideas linking all the subjects involved, as well as to graduate students and young researchers ready to enter this beautiful new area.

Toric Varieties

Download Toric Varieties PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 147047820X
Total Pages : 870 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Toric Varieties by : David A. Cox

Download or read book Toric Varieties written by David A. Cox and published by American Mathematical Society. This book was released on 2024-06-25 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: Toric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry. Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.

Combinatorial And Toric Homotopy: Introductory Lectures

Download Combinatorial And Toric Homotopy: Introductory Lectures PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813226587
Total Pages : 448 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Combinatorial And Toric Homotopy: Introductory Lectures by : Alastair Darby

Download or read book Combinatorial And Toric Homotopy: Introductory Lectures written by Alastair Darby and published by World Scientific. This book was released on 2017-10-20 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of introductory lectures on the topics in the new and rapidly developing area of toric homotopy theory, and its applications to the current research in configuration spaces and braids, as well as to more applicable mathematics such as fr-codes and robot motion planning.The book starts intertwining homotopy theoretical and combinatorial ideas within the remits of toric topology and illustrates an attempt to classify in a combinatorial way polytopes known as fullerenes, which are important objects in quantum physics, quantum chemistry and nanotechnology. Toric homotopy theory is then introduced as a further development of toric topology, which describes properties of Davis-Januszkiewicz spaces, moment-angle complexes and their generalizations to polyhedral products. The book also displays the current research on configuration spaces, braids, the theory of limits over the category of presentations and the theory of fr-codes. As an application to robotics, the book surveys topological problems relevant to the motion planning problem of robotics and includes new results and constructions, which enrich the emerging area of topological robotics.The book is at research entry level addressing the core components in homotopy theory and their important applications in the sciences and thus suitable for advanced undergraduate and graduate students.

Introduction to Toric Varieties

Download Introduction to Toric Varieties PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691000497
Total Pages : 174 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Toric Varieties by : William Fulton

Download or read book Introduction to Toric Varieties written by William Fulton and published by Princeton University Press. This book was released on 1993 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Toric varieties are algebraic varieties arising from elementary geometric and combinatorial objects such as convex polytopes in Euclidean space with vertices on lattice points. Since many algebraic geometry notions such as singularities, birational maps, cycles, homology, intersection theory, and Riemann-Roch translate into simple facts about polytopes, toric varieties provide a marvelous source of examples in algebraic geometry. In the other direction, general facts from algebraic geometry have implications for such polytopes, such as to the problem of the number of lattice points they contain. In spite of the fact that toric varieties are very special in the spectrum of all algebraic varieties, they provide a remarkably useful testing ground for general theories. The aim of this mini-course is to develop the foundations of the study of toric varieties, with examples, and describe some of these relations and applications. The text concludes with Stanley's theorem characterizing the numbers of simplicies in each dimension in a convex simplicial polytope. Although some general theorems are quoted without proof, the concrete interpretations via simplicial geometry should make the text accessible to beginners in algebraic geometry.

The Topology of Torus Actions on Symplectic Manifolds

Download The Topology of Torus Actions on Symplectic Manifolds PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034872216
Total Pages : 181 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis The Topology of Torus Actions on Symplectic Manifolds by : Michèle Audin

Download or read book The Topology of Torus Actions on Symplectic Manifolds written by Michèle Audin and published by Birkhäuser. This book was released on 2012-12-06 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material and references in this extended second edition of "The Topology of Torus Actions on Symplectic Manifolds", published as Volume 93 in this series in 1991, have been updated. Symplectic manifolds and torus actions are investigated, with numerous examples of torus actions, for instance on some moduli spaces. Although the book is still centered on convexity results, it contains much more material, in particular lots of new examples and exercises.

Handbook of Homotopy Theory

Download Handbook of Homotopy Theory PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351251600
Total Pages : 1142 pages
Book Rating : 4.3/5 (512 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Homotopy Theory by : Haynes Miller

Download or read book Handbook of Homotopy Theory written by Haynes Miller and published by CRC Press. This book was released on 2020-01-23 with total page 1142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Pattern Recognition on Oriented Matroids

Download Pattern Recognition on Oriented Matroids PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110530848
Total Pages : 260 pages
Book Rating : 4.1/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Pattern Recognition on Oriented Matroids by : Andrey O. Matveev

Download or read book Pattern Recognition on Oriented Matroids written by Andrey O. Matveev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-09-11 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theory was laid in the mid-1960s, when it was shown that the familiar notion of solution to a feasible system of linear inequalities has ingenious analogues which can serve as collective solutions to infeasible systems. A hierarchy of dialects in the language of mathematics, for instance, open cones in the context of linear inequality systems, regions of hyperplane arrangements, and maximal covectors (or topes) of oriented matroids, provides an excellent opportunity to take a fresh look at the infeasible system of homogeneous strict linear inequalities – the standard working model for the contradictory two-class pattern recognition problem in its geometric setting. The universal language of oriented matroid theory considerably simplifies a structural and enumerative analysis of applied aspects of the infeasibility phenomenon. The present book is devoted to several selected topics in the emerging theory of pattern recognition on oriented matroids: the questions of existence and applicability of matroidal generalizations of committee decision rules and related graph-theoretic constructions to oriented matroids with very weak restrictions on their structural properties; a study (in which, in particular, interesting subsequences of the Farey sequence appear naturally) of the hierarchy of the corresponding tope committees; a description of the three-tope committees that are the most attractive approximation to the notion of solution to an infeasible system of linear constraints; an application of convexity in oriented matroids as well as blocker constructions in combinatorial optimization and in poset theory to enumerative problems on tope committees; an attempt to clarify how elementary changes (one-element reorientations) in an oriented matroid affect the family of its tope committees; a discrete Fourier analysis of the important family of critical tope committees through rank and distance relations in the tope poset and the tope graph; the characterization of a key combinatorial role played by the symmetric cycles in hypercube graphs. Contents Oriented Matroids, the Pattern Recognition Problem, and Tope Committees Boolean Intervals Dehn–Sommerville Type Relations Farey Subsequences Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets Committees of Set Families, and Relative Blocking Constructions in Posets Layers of Tope Committees Three-Tope Committees Halfspaces, Convex Sets, and Tope Committees Tope Committees and Reorientations of Oriented Matroids Topes and Critical Committees Critical Committees and Distance Signals Symmetric Cycles in the Hypercube Graphs

Handbook of Discrete and Computational Geometry

Download Handbook of Discrete and Computational Geometry PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498711421
Total Pages : 1928 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Discrete and Computational Geometry by : Csaba D. Toth

Download or read book Handbook of Discrete and Computational Geometry written by Csaba D. Toth and published by CRC Press. This book was released on 2017-11-22 with total page 1928 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

p-adic Differential Equations

Download p-adic Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009275658
Total Pages : 518 pages
Book Rating : 4.0/5 (92 download)

DOWNLOAD NOW!


Book Synopsis p-adic Differential Equations by : Kiran S. Kedlaya

Download or read book p-adic Differential Equations written by Kiran S. Kedlaya and published by Cambridge University Press. This book was released on 2022-06-09 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this volume provides a uniquely detailed study of $P$-adic differential equations. Assuming only a graduate-level background in number theory, the text builds the theory from first principles all the way to the frontiers of current research, highlighting analogies and links with the classical theory of ordinary differential equations. The author includes many original results which play a key role in the study of $P$-adic geometry, crystalline cohomology, $P$-adic Hodge theory, perfectoid spaces, and algorithms for L-functions of arithmetic varieties. This updated edition contains five new chapters, which revisit the theory of convergence of solutions of $P$-adic differential equations from a more global viewpoint, introducing the Berkovich analytification of the projective line, defining convergence polygons as functions on the projective line, and deriving a global index theorem in terms of the Laplacian of the convergence polygon.

Principles of Superconducting Quantum Computers

Download Principles of Superconducting Quantum Computers PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119750741
Total Pages : 388 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Principles of Superconducting Quantum Computers by : Daniel D. Stancil

Download or read book Principles of Superconducting Quantum Computers written by Daniel D. Stancil and published by John Wiley & Sons. This book was released on 2022-04-19 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the intersection of computer science, physics, and electrical and computer engineering with this discussion of the engineering of quantum computers In Principles of Superconducting Quantum Computers, a pair of distinguished researchers delivers a comprehensive and insightful discussion of the building of quantum computing hardware and systems. Bridging the gaps between computer science, physics, and electrical and computer engineering, the book focuses on the engineering topics of devices, circuits, control, and error correction. Using data from actual quantum computers, the authors illustrate critical concepts from quantum computing. Questions and problems at the end of each chapter assist students with learning and retention, while the text offers descriptions of fundamentals concepts ranging from the physics of gates to quantum error correction techniques. The authors provide efficient implementations of classical computations, and the book comes complete with a solutions manual and demonstrations of many of the concepts discussed within. It also includes: A thorough introduction to qubits, gates, and circuits, including unitary transformations, single qubit gates, and controlled (two qubit) gates Comprehensive explorations of the physics of single qubit gates, including the requirements for a quantum computer, rotations, two-state systems, and Rabi oscillations Practical discussions of the physics of two qubit gates, including tunable qubits, SWAP gates, controlled-NOT gates, and fixed frequency qubits In-depth examinations of superconducting quantum computer systems, including the need for cryogenic temperatures, transmission lines, S parameters, and more Ideal for senior-level undergraduate and graduate students in electrical and computer engineering programs, Principles of Superconducting Quantum Computers also deserves a place in the libraries of practicing engineers seeking a better understanding of quantum computer systems.

Advanced Topics in Quantum Field Theory

Download Advanced Topics in Quantum Field Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139501887
Total Pages : 641 pages
Book Rating : 4.1/5 (395 download)

DOWNLOAD NOW!


Book Synopsis Advanced Topics in Quantum Field Theory by : M. Shifman

Download or read book Advanced Topics in Quantum Field Theory written by M. Shifman and published by Cambridge University Press. This book was released on 2012-01-19 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the advent of Yang–Mills theories and supersymmetry in the 1970s, quantum field theory - the basis of the modern description of physical phenomena at the fundamental level - has undergone revolutionary developments. This is the first systematic and comprehensive text devoted specifically to modern field theory, bringing readers to the cutting edge of current research. The book emphasizes nonperturbative phenomena and supersymmetry. It includes a thorough discussion of various phases of gauge theories, extended objects and their quantization, and global supersymmetry from a modern perspective. Featuring extensive cross-referencing from traditional topics to recent breakthroughs in the field, it prepares students for independent research. The side boxes summarizing the main results and over 70 exercises make this an indispensable book for graduate students and researchers in theoretical physics.

Topics in Algebraic Geometry and Geometric Modeling

Download Topics in Algebraic Geometry and Geometric Modeling PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821834207
Total Pages : 378 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Topics in Algebraic Geometry and Geometric Modeling by : Ron Goldman

Download or read book Topics in Algebraic Geometry and Geometric Modeling written by Ron Goldman and published by American Mathematical Soc.. This book was released on 2003 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry and geometric modeling both deal with curves and surfaces generated by polynomial equations. Algebraic geometry investigates the theoretical properties of polynomial curves and surfaces; geometric modeling uses polynomial, piecewise polynomial, and rational curves and surfaces to build computer models of mechanical components and assemblies for industrial design and manufacture. The NSF sponsored the four-day ''Vilnius Workshop on Algebraic Geometry and Geometric Modeling'', which brought together some of the top experts in the two research communities to examine a wide range of topics of interest to both fields. This volume is an outgrowth of that workshop. Included are surveys, tutorials, and research papers. In addition, the editors have included a translation of Minding's 1841 paper, ''On the determination of the degree of an equations obtained by elimination'', which foreshadows the modern application of mixed volumes in algebraic geometry. The volume is suitable for mathematicians, computer scientists, and engineers interested in applications of algebraic geometry to geometric modeling.

Combinatorial Convexity and Algebraic Geometry

Download Combinatorial Convexity and Algebraic Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461240441
Total Pages : 378 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Combinatorial Convexity and Algebraic Geometry by : Günter Ewald

Download or read book Combinatorial Convexity and Algebraic Geometry written by Günter Ewald and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.

Compactifications, Configurations, and Cohomology

Download Compactifications, Configurations, and Cohomology PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470469928
Total Pages : 168 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Compactifications, Configurations, and Cohomology by : Peter Crooks

Download or read book Compactifications, Configurations, and Cohomology written by Peter Crooks and published by American Mathematical Society. This book was released on 2023-09-25 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Conference on Compactifications, Configurations, and Cohomology, held from October 22–24, 2021, at Northeastern University, Boston, MA. Some of the most active and fruitful mathematical research occurs at the interface of algebraic geometry, representation theory, and topology. Noteworthy examples include the study of compactifications in three specific settings—algebraic group actions, configuration spaces, and hyperplane arrangements. These three types of compactifications enjoy common structural features, including relations to root systems, combinatorial descriptions of cohomology rings, the appearance of iterated blow-ups, the geometry of normal crossing divisors, and connections to mirror symmetry in physics. On the other hand, these compactifications are often studied independently of one another. The articles focus on new and existing connections between the aforementioned three types of compactifications, thereby setting the stage for further research. It draws on the discipline-specific expertise of all contributors, and at the same time gives a unified, self-contained reference for compactifications and related constructions in different contexts.

Interactions with Lattice Polytopes

Download Interactions with Lattice Polytopes PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030983277
Total Pages : 368 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Interactions with Lattice Polytopes by : Alexander M. Kasprzyk

Download or read book Interactions with Lattice Polytopes written by Alexander M. Kasprzyk and published by Springer Nature. This book was released on 2022-06-08 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.

Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169)

Download Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691138222
Total Pages : 349 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169) by : Kazuya Kato

Download or read book Classifying Spaces of Degenerating Polarized Hodge Structures. (AM-169) written by Kazuya Kato and published by Princeton University Press. This book was released on 2009 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinement of the toroidal compactifications by Mumford et al. For general D, fine moduli spaces may have slits caused by Griffiths transversality at the boundary and be no longer locally compact. Second, Kato and Usui construct eight enlargements of D and describe their relations by a fundamental diagram, where four of these enlargements live in the Hodge theoretic area and the other four live in the algebra-group theoretic area. These two areas are connected by a continuous map given by the SL(2)-orbit theorem of Cattani-Kaplan-Schmid. This diagram is used for the construction in the first topic.