Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Topological Derivative In Shape Optimization
Download Topological Derivative In Shape Optimization full books in PDF, epub, and Kindle. Read online Topological Derivative In Shape Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis An Introduction to the Topological Derivative Method by : Antonio André Novotny
Download or read book An Introduction to the Topological Derivative Method written by Antonio André Novotny and published by Springer Nature. This book was released on 2020-01-21 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.
Author :Antonio André Novotny Publisher :Springer Science & Business Media ISBN 13 :3642352456 Total Pages :423 pages Book Rating :4.6/5 (423 download)
Book Synopsis Topological Derivatives in Shape Optimization by : Antonio André Novotny
Download or read book Topological Derivatives in Shape Optimization written by Antonio André Novotny and published by Springer Science & Business Media. This book was released on 2012-12-14 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, fracture mechanics sensitivity analysis and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intended for researchers and graduate students in applied mathematics and computational mechanics interested in any aspect of topological asymptotic analysis. In particular, it can be adopted as a textbook in advanced courses on the subject and shall be useful for readers interested on the mathematical aspects of topological asymptotic analysis as well as on applications of topological derivatives in computation mechanics.
Book Synopsis Introduction to Shape Optimization by : Jan Sokolowski
Download or read book Introduction to Shape Optimization written by Jan Sokolowski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.
Book Synopsis IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials by : Martin Philip Bendsoe
Download or read book IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials written by Martin Philip Bendsoe and published by Springer Science & Business Media. This book was released on 2006-10-03 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers edited papers presented at the IUTAM-Symposium Topological design optimization of structures, machines and materials - status and perspectives, October 2005. The papers cover the application of topological design optimization to fluid-solid interaction problems, acoustics problems, and to problems in biomechanics, as well as to other multiphysics problems. Also in focus are new basic modelling paradigms, covering new geometry modelling such as level-set methods and topological derivatives.
Book Synopsis Applications of the Topological Derivative Method by : Antonio André Novotny
Download or read book Applications of the Topological Derivative Method written by Antonio André Novotny and published by Springer. This book was released on 2018-12-28 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.
Book Synopsis Design Sensitivity Analysis of Structural Systems by : Vadim Komkov
Download or read book Design Sensitivity Analysis of Structural Systems written by Vadim Komkov and published by Academic Press. This book was released on 1986-05-01 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is organized into four chapters. The first three treat distinct types of design variables, and the fourth presents a built-up structure formulation that combines the other three. The first chapter treats finite-dimensional problems, in which the state variable is a finite-dimensional vector of structure displacements and the design parameters. The structual state equations are matrix equations for static response, vibration, and buckling of structures and matrix differential equations for transient dynamic response of structures, which design variables appearing in the coefficient matrices.
Book Synopsis Topology Optimization in Engineering Structure Design by : Jihong Zhu
Download or read book Topology Optimization in Engineering Structure Design written by Jihong Zhu and published by Elsevier. This book was released on 2016-11-08 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topology Optimization in Engineering Structure Design explores the recent advances and applications of topology optimization in engineering structures design, with a particular focus on aircraft and aerospace structural systems.To meet the increasingly complex engineering challenges provided by rapid developments in these industries, structural optimization techniques have developed in conjunction with them over the past two decades. The latest methods and theories to improve mechanical performances and save structural weight under static, dynamic and thermal loads are summarized and explained in detail here, in addition to potential applications of topology optimization techniques such as shape preserving design, smart structure design and additive manufacturing.These new design strategies are illustrated by a host of worked examples, which are inspired by real engineering situations, some of which have been applied to practical structure design with significant effects. Written from a forward-looking applied engineering perspective, the authors not only summarize the latest developments in this field of structure design but also provide both theoretical knowledge and a practical guideline. This book should appeal to graduate students, researchers and engineers, in detailing how to use topology optimization methods to improve product design. - Combines practical applications and topology optimization methodologies - Provides problems inspired by real engineering difficulties - Designed to help researchers in universities acquire more engineering requirements
Book Synopsis Frontiers in PDE-Constrained Optimization by : Harbir Antil
Download or read book Frontiers in PDE-Constrained Optimization written by Harbir Antil and published by Springer. This book was released on 2018-10-12 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs). As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.
Book Synopsis Shapes and Geometries by : M. C. Delfour
Download or read book Shapes and Geometries written by M. C. Delfour and published by SIAM. This book was released on 2011-01-01 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: This considerably enriched new edition provides a self-contained presentation of the mathematical foundations, constructions, and tools necessary for studying problems where the modeling, optimization, or control variable is the shape or the structure of a geometric object.
Book Synopsis Shape Optimization Problems by : Hideyuki Azegami
Download or read book Shape Optimization Problems written by Hideyuki Azegami and published by Springer Nature. This book was released on 2020-09-30 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.
Book Synopsis Shape Optimization by the Homogenization Method by : Gregoire Allaire
Download or read book Shape Optimization by the Homogenization Method written by Gregoire Allaire and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.
Book Synopsis Shapes and Geometries by : Michel C. Delfour
Download or read book Shapes and Geometries written by Michel C. Delfour and published by SIAM. This book was released on 2001-01-01 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: The tools to use for problems where the modeling, optimization, or control variable is the structure of a geometric object.
Download or read book Optimal Shape Design written by B. Kawohl and published by Springer Science & Business Media. This book was released on 2000-11-16 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Shape Design is concerned with the optimization of some performance criterion dependent (besides the constraints of the problem) on the "shape" of some region. The main topics covered are: the optimal design of a geometrical object, for instance a wing, moving in a fluid; the optimal shape of a region (a harbor), given suitable constraints on the size of the entrance to the harbor, subject to incoming waves; the optimal design of some electrical device subject to constraints on the performance. The aim is to show that Optimal Shape Design, besides its interesting industrial applications, possesses nontrivial mathematical aspects. The main theoretical tools developed here are the homogenization method and domain variations in PDE. The style is mathematically rigorous, but specifically oriented towards applications, and it is intended for both pure and applied mathematicians. The reader is required to know classical PDE theory and basic functional analysis.
Book Synopsis Computational Topology for Data Analysis by : Tamal Krishna Dey
Download or read book Computational Topology for Data Analysis written by Tamal Krishna Dey and published by Cambridge University Press. This book was released on 2022-03-10 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
Book Synopsis Topology Optimization by : Martin Philip Bendsoe
Download or read book Topology Optimization written by Martin Philip Bendsoe and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topology optimization method solves the basic enginee- ring problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design which is concerned with the optimization of structural topology, shape and material. This edition, has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state-of-the-art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also materials and MEMS.
Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2008-10-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Book Synopsis Introduction to Optimization of Structures by : N.V. Banichuk
Download or read book Introduction to Optimization of Structures written by N.V. Banichuk and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an exposition of the theory, techniques, and the basic formulation of structural optimization problems. The author considers applications of design optimization criteria involving strength, rigidity, stability and weight. Analytic and numerical techniques are introduced for research in optimal shapes and internal configurations of deformable bodies and structures. Problems of the optimal design of beams, systems of rods, plates and shells, are studied in detail. With regard to applications, this work is oriented towards solutions of real problems, such as reduction of the volume or weight of the material, and improvement of mechanical properties of structures. This book is written for readers specializing in applied mechanics, applied mathematics, and numerical analysis."