Selected Topics on Continuous-time Controlled Markov Chains and Markov Games

Download Selected Topics on Continuous-time Controlled Markov Chains and Markov Games PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 1848168489
Total Pages : 292 pages
Book Rating : 4.8/5 (481 download)

DOWNLOAD NOW!


Book Synopsis Selected Topics on Continuous-time Controlled Markov Chains and Markov Games by : Tomás Prieto-Rumeau

Download or read book Selected Topics on Continuous-time Controlled Markov Chains and Markov Games written by Tomás Prieto-Rumeau and published by World Scientific. This book was released on 2012 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book concerns continuous-time controlled Markov chains, also known as continuous-time Markov decision processes. They form a class of stochastic control problems in which a single decision-maker wishes to optimize a given objective function. This book is also concerned with Markov games, where two decision-makers (or players) try to optimize their own objective function. Both decision-making processes appear in a large number of applications in economics, operations research, engineering, and computer science, among other areas.An extensive, self-contained, up-to-date analysis of basic optimality criteria (such as discounted and average reward), and advanced optimality criteria (e.g., bias, overtaking, sensitive discount, and Blackwell optimality) is presented. A particular emphasis is made on the application of the results herein: algorithmic and computational issues are discussed, and applications to population models and epidemic processes are shown.This book is addressed to students and researchers in the fields of stochastic control and stochastic games. Moreover, it could be of interest also to undergraduate and beginning graduate students because the reader is not supposed to have a high mathematical background: a working knowledge of calculus, linear algebra, probability, and continuous-time Markov chains should suffice to understand the contents of the book.

Controlled Markov Processes and Viscosity Solutions

Download Controlled Markov Processes and Viscosity Solutions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387310711
Total Pages : 436 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Controlled Markov Processes and Viscosity Solutions by : Wendell H. Fleming

Download or read book Controlled Markov Processes and Viscosity Solutions written by Wendell H. Fleming and published by Springer Science & Business Media. This book was released on 2006-02-04 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.

Markov Processes and Controlled Markov Chains

Download Markov Processes and Controlled Markov Chains PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146130265X
Total Pages : 501 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Markov Processes and Controlled Markov Chains by : Zhenting Hou

Download or read book Markov Processes and Controlled Markov Chains written by Zhenting Hou and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general theory of stochastic processes and the more specialized theory of Markov processes evolved enormously in the second half of the last century. In parallel, the theory of controlled Markov chains (or Markov decision processes) was being pioneered by control engineers and operations researchers. Researchers in Markov processes and controlled Markov chains have been, for a long time, aware of the synergies between these two subject areas. However, this may be the first volume dedicated to highlighting these synergies and, almost certainly, it is the first volume that emphasizes the contributions of the vibrant and growing Chinese school of probability. The chapters that appear in this book reflect both the maturity and the vitality of modern day Markov processes and controlled Markov chains. They also will provide an opportunity to trace the connections that have emerged between the work done by members of the Chinese school of probability and the work done by the European, US, Central and South American and Asian scholars.

Continuous-Time Markov Decision Processes

Download Continuous-Time Markov Decision Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642025471
Total Pages : 240 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Continuous-Time Markov Decision Processes by : Xianping Guo

Download or read book Continuous-Time Markov Decision Processes written by Xianping Guo and published by Springer Science & Business Media. This book was released on 2009-09-18 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.

Markov Decision Processes with Applications to Finance

Download Markov Decision Processes with Applications to Finance PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642183247
Total Pages : 393 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Markov Decision Processes with Applications to Finance by : Nicole Bäuerle

Download or read book Markov Decision Processes with Applications to Finance written by Nicole Bäuerle and published by Springer Science & Business Media. This book was released on 2011-06-06 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).

Constrained Markov Decision Processes

Download Constrained Markov Decision Processes PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351458248
Total Pages : 256 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Constrained Markov Decision Processes by : Eitan Altman

Download or read book Constrained Markov Decision Processes written by Eitan Altman and published by Routledge. This book was released on 2021-12-17 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other.

Adaptive Markov Control Processes

Download Adaptive Markov Control Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441987142
Total Pages : 160 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Adaptive Markov Control Processes by : Onesimo Hernandez-Lerma

Download or read book Adaptive Markov Control Processes written by Onesimo Hernandez-Lerma and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.

Optimization and Games for Controllable Markov Chains

Download Optimization and Games for Controllable Markov Chains PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031435753
Total Pages : 340 pages
Book Rating : 4.0/5 (314 download)

DOWNLOAD NOW!


Book Synopsis Optimization and Games for Controllable Markov Chains by : Julio B. Clempner

Download or read book Optimization and Games for Controllable Markov Chains written by Julio B. Clempner and published by Springer Nature. This book was released on 2023-12-13 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book considers a class of ergodic finite controllable Markov's chains. The main idea behind the method, described in this book, is to develop the original discrete optimization problems (or game models) in the space of randomized formulations, where the variables stand in for the distributions (mixed strategies or preferences) of the original discrete (pure) strategies in the use. The following suppositions are made: a finite state space, a limited action space, continuity of the probabilities and rewards associated with the actions, and a necessity for accessibility. These hypotheses lead to the existence of an optimal policy. The best course of action is always stationary. It is either simple (i.e., nonrandomized stationary) or composed of two nonrandomized policies, which is equivalent to randomly selecting one of two simple policies throughout each epoch by tossing a biased coin. As a bonus, the optimization procedure just has to repeatedly solve the time-average dynamic programming equation, making it theoretically feasible to choose the optimum course of action under the global restriction. In the ergodic cases the state distributions, generated by the corresponding transition equations, exponentially quickly converge to their stationary (final) values. This makes it possible to employ all widely used optimization methods (such as Gradient-like procedures, Extra-proximal method, Lagrange's multipliers, Tikhonov's regularization), including the related numerical techniques. In the book we tackle different problems and theoretical Markov models like controllable and ergodic Markov chains, multi-objective Pareto front solutions, partially observable Markov chains, continuous-time Markov chains, Nash equilibrium and Stackelberg equilibrium, Lyapunov-like function in Markov chains, Best-reply strategy, Bayesian incentive-compatible mechanisms, Bayesian Partially Observable Markov Games, bargaining solutions for Nash and Kalai-Smorodinsky formulations, multi-traffic signal-control synchronization problem, Rubinstein's non-cooperative bargaining solutions, the transfer pricing problem as bargaining.

Continuous-Time Markov Chains and Applications

Download Continuous-Time Markov Chains and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461443466
Total Pages : 442 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Continuous-Time Markov Chains and Applications by : G. George Yin

Download or read book Continuous-Time Markov Chains and Applications written by G. George Yin and published by Springer Science & Business Media. This book was released on 2012-11-14 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic treatment of singularly perturbed systems that naturally arise in control and optimization, queueing networks, manufacturing systems, and financial engineering. It presents results on asymptotic expansions of solutions of Komogorov forward and backward equations, properties of functional occupation measures, exponential upper bounds, and functional limit results for Markov chains with weak and strong interactions. To bridge the gap between theory and applications, a large portion of the book is devoted to applications in controlled dynamic systems, production planning, and numerical methods for controlled Markovian systems with large-scale and complex structures in the real-world problems. This second edition has been updated throughout and includes two new chapters on asymptotic expansions of solutions for backward equations and hybrid LQG problems. The chapters on analytic and probabilistic properties of two-time-scale Markov chains have been almost completely rewritten and the notation has been streamlined and simplified. This book is written for applied mathematicians, engineers, operations researchers, and applied scientists. Selected material from the book can also be used for a one semester advanced graduate-level course in applied probability and stochastic processes.

Markov Chains and Stochastic Stability

Download Markov Chains and Stochastic Stability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521731828
Total Pages : 623 pages
Book Rating : 4.5/5 (217 download)

DOWNLOAD NOW!


Book Synopsis Markov Chains and Stochastic Stability by : Sean Meyn

Download or read book Markov Chains and Stochastic Stability written by Sean Meyn and published by Cambridge University Press. This book was released on 2009-04-02 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.

Handbook of Markov Decision Processes

Download Handbook of Markov Decision Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461508053
Total Pages : 560 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Markov Decision Processes by : Eugene A. Feinberg

Download or read book Handbook of Markov Decision Processes written by Eugene A. Feinberg and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.

Controlled Markov Chains, Graphs and Hamiltonicity

Download Controlled Markov Chains, Graphs and Hamiltonicity PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601980884
Total Pages : 95 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Controlled Markov Chains, Graphs and Hamiltonicity by : Jerzy A. Filar

Download or read book Controlled Markov Chains, Graphs and Hamiltonicity written by Jerzy A. Filar and published by Now Publishers Inc. This book was released on 2007 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Controlled Markov Chains, Graphs & Hamiltonicity" summarizes a line of research that maps certain classical problems of discrete mathematics--such as the Hamiltonian cycle and the Traveling Salesman problems--into convex domains where continuum analysis can be carried out. (Mathematics)

Markov Chains

Download Markov Chains PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521633963
Total Pages : 260 pages
Book Rating : 4.6/5 (339 download)

DOWNLOAD NOW!


Book Synopsis Markov Chains by : J. R. Norris

Download or read book Markov Chains written by J. R. Norris and published by Cambridge University Press. This book was released on 1998-07-28 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov chains are central to the understanding of random processes. This is not only because they pervade the applications of random processes, but also because one can calculate explicitly many quantities of interest. This textbook, aimed at advanced undergraduate or MSc students with some background in basic probability theory, focuses on Markov chains and quickly develops a coherent and rigorous theory whilst showing also how actually to apply it. Both discrete-time and continuous-time chains are studied. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and exercises and examples drawn both from theory and practice. It will therefore be an ideal text either for elementary courses on random processes or those that are more oriented towards applications.

Partially Observed Markov Decision Processes

Download Partially Observed Markov Decision Processes PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107134609
Total Pages : 491 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Partially Observed Markov Decision Processes by : Vikram Krishnamurthy

Download or read book Partially Observed Markov Decision Processes written by Vikram Krishnamurthy and published by Cambridge University Press. This book was released on 2016-03-21 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.

Markov Processes for Stochastic Modeling

Download Markov Processes for Stochastic Modeling PDF Online Free

Author :
Publisher : Newnes
ISBN 13 : 0124078397
Total Pages : 515 pages
Book Rating : 4.1/5 (24 download)

DOWNLOAD NOW!


Book Synopsis Markov Processes for Stochastic Modeling by : Oliver Ibe

Download or read book Markov Processes for Stochastic Modeling written by Oliver Ibe and published by Newnes. This book was released on 2013-05-22 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.

Discrete-Time Markov Control Processes

Download Discrete-Time Markov Control Processes PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461207290
Total Pages : 223 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time Markov Control Processes by : Onesimo Hernandez-Lerma

Download or read book Discrete-Time Markov Control Processes written by Onesimo Hernandez-Lerma and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the first part of a planned two-volume series devoted to a systematic exposition of some recent developments in the theory of discrete-time Markov control processes (MCPs). Interest is mainly confined to MCPs with Borel state and control (or action) spaces, and possibly unbounded costs and noncompact control constraint sets. MCPs are a class of stochastic control problems, also known as Markov decision processes, controlled Markov processes, or stochastic dynamic pro grams; sometimes, particularly when the state space is a countable set, they are also called Markov decision (or controlled Markov) chains. Regardless of the name used, MCPs appear in many fields, for example, engineering, economics, operations research, statistics, renewable and nonrenewable re source management, (control of) epidemics, etc. However, most of the lit erature (say, at least 90%) is concentrated on MCPs for which (a) the state space is a countable set, and/or (b) the costs-per-stage are bounded, and/or (c) the control constraint sets are compact. But curiously enough, the most widely used control model in engineering and economics--namely the LQ (Linear system/Quadratic cost) model-satisfies none of these conditions. Moreover, when dealing with "partially observable" systems) a standard approach is to transform them into equivalent "completely observable" sys tems in a larger state space (in fact, a space of probability measures), which is uncountable even if the original state process is finite-valued.

Markov Chains

Download Markov Chains PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119387558
Total Pages : 252 pages
Book Rating : 4.1/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Markov Chains by : Paul A. Gagniuc

Download or read book Markov Chains written by Paul A. Gagniuc and published by John Wiley & Sons. This book was released on 2017-07-31 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fascinating and instructive guide to Markov chains for experienced users and newcomers alike This unique guide to Markov chains approaches the subject along the four convergent lines of mathematics, implementation, simulation, and experimentation. It introduces readers to the art of stochastic modeling, shows how to design computer implementations, and provides extensive worked examples with case studies. Markov Chains: From Theory to Implementation and Experimentation begins with a general introduction to the history of probability theory in which the author uses quantifiable examples to illustrate how probability theory arrived at the concept of discrete-time and the Markov model from experiments involving independent variables. An introduction to simple stochastic matrices and transition probabilities is followed by a simulation of a two-state Markov chain. The notion of steady state is explored in connection with the long-run distribution behavior of the Markov chain. Predictions based on Markov chains with more than two states are examined, followed by a discussion of the notion of absorbing Markov chains. Also covered in detail are topics relating to the average time spent in a state, various chain configurations, and n-state Markov chain simulations used for verifying experiments involving various diagram configurations. • Fascinating historical notes shed light on the key ideas that led to the development of the Markov model and its variants • Various configurations of Markov Chains and their limitations are explored at length • Numerous examples—from basic to complex—are presented in a comparative manner using a variety of color graphics • All algorithms presented can be analyzed in either Visual Basic, Java Script, or PHP • Designed to be useful to professional statisticians as well as readers without extensive knowledge of probability theory Covering both the theory underlying the Markov model and an array of Markov chain implementations, within a common conceptual framework, Markov Chains: From Theory to Implementation and Experimentation is a stimulating introduction to and a valuable reference for those wishing to deepen their understanding of this extremely valuable statistical tool. Paul A. Gagniuc, PhD, is Associate Professor at Polytechnic University of Bucharest, Romania. He obtained his MS and his PhD in genetics at the University of Bucharest. Dr. Gagniuc’s work has been published in numerous high profile scientific journals, ranging from the Public Library of Science to BioMed Central and Nature journals. He is the recipient of several awards for exceptional scientific results and a highly active figure in the review process for different scientific areas.