Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Time Series Modeling For Analysis And Control
Download Time Series Modeling For Analysis And Control full books in PDF, epub, and Kindle. Read online Time Series Modeling For Analysis And Control ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Time Series Analysis: Forecasting & Control, 3/E by :
Download or read book Time Series Analysis: Forecasting & Control, 3/E written by and published by Pearson Education India. This book was released on 1994-09 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a complete revision of a classic, seminal, and authoritative text that has been the model for most books on the topic written since 1970. It explores the building of stochastic (statistical) models for time series and their use in important areas of application -forecasting, model specification, estimation, and checking, transfer function modeling of dynamic relationships, modeling the effects of intervention events, and process control.
Book Synopsis Time Series Analysis, Modeling and Applications by : Witold Pedrycz
Download or read book Time Series Analysis, Modeling and Applications written by Witold Pedrycz and published by Springer Science & Business Media. This book was released on 2012-11-29 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Temporal and spatiotemporal data form an inherent fabric of the society as we are faced with streams of data coming from numerous sensors, data feeds, recordings associated with numerous areas of application embracing physical and human-generated phenomena (environmental data, financial markets, Internet activities, etc.). A quest for a thorough analysis, interpretation, modeling and prediction of time series comes with an ongoing challenge for developing models that are both accurate and user-friendly (interpretable). The volume is aimed to exploit the conceptual and algorithmic framework of Computational Intelligence (CI) to form a cohesive and comprehensive environment for building models of time series. The contributions covered in the volume are fully reflective of the wealth of the CI technologies by bringing together ideas, algorithms, and numeric studies, which convincingly demonstrate their relevance, maturity and visible usefulness. It reflects upon the truly remarkable diversity of methodological and algorithmic approaches and case studies. This volume is aimed at a broad audience of researchers and practitioners engaged in various branches of operations research, management, social sciences, engineering, and economics. Owing to the nature of the material being covered and a way it has been arranged, it establishes a comprehensive and timely picture of the ongoing pursuits in the area and fosters further developments.
Book Synopsis Time Series Modeling for Analysis and Control by : Kohei Ohtsu
Download or read book Time Series Modeling for Analysis and Control written by Kohei Ohtsu and published by Springer. This book was released on 2015-03-19 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents multivariate time series methods for the analysis and optimal control of feedback systems. Although ships’ autopilot systems are considered through the entire book, the methods set forth in this book can be applied to many other complicated, large, or noisy feedback control systems for which it is difficult to derive a model of the entire system based on theory in that subject area. The basic models used in this method are the multivariate autoregressive model with exogenous variables (ARX) model and the radial bases function net-type coefficients ARX model. The noise contribution analysis can then be performed through the estimated autoregressive (AR) model and various types of autopilot systems can be designed through the state–space representation of the models. The marine autopilot systems addressed in this book include optimal controllers for course-keeping motion, rolling reduction controllers with rudder motion, engine governor controllers, noise adaptive autopilots, route-tracking controllers by direct steering, and the reference course-setting approach. The methods presented here are exemplified with real data analysis and experiments on real ships. This book is highly recommended to readers who are interested in designing optimal or adaptive controllers not only of ships but also of any other complicated systems under noisy disturbance conditions.
Book Synopsis Time Series Analysis and Forecasting by Example by : Søren Bisgaard
Download or read book Time Series Analysis and Forecasting by Example written by Søren Bisgaard and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in detail and explain the relevant theory while also focusing on the interpretation of results in data analysis. Following a discussion of why autocorrelation is often observed when data is collected in time, subsequent chapters explore related topics, including: Graphical tools in time series analysis Procedures for developing stationary, non-stationary, and seasonal models How to choose the best time series model Constant term and cancellation of terms in ARIMA models Forecasting using transfer function-noise models The final chapter is dedicated to key topics such as spurious relationships, autocorrelation in regression, and multiple time series. Throughout the book, real-world examples illustrate step-by-step procedures and instructions using statistical software packages such as SAS, JMP, Minitab, SCA, and R. A related Web site features PowerPoint slides to accompany each chapter as well as the book's data sets. With its extensive use of graphics and examples to explain key concepts, Time Series Analysis and Forecasting by Example is an excellent book for courses on time series analysis at the upper-undergraduate and graduate levels. it also serves as a valuable resource for practitioners and researchers who carry out data and time series analysis in the fields of engineering, business, and economics.
Book Synopsis Forecasting, Structural Time Series Models and the Kalman Filter by : Andrew C. Harvey
Download or read book Forecasting, Structural Time Series Models and the Kalman Filter written by Andrew C. Harvey and published by Cambridge University Press. This book was released on 1990 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synthesis of concepts and materials, that ordinarily appear separately in time series and econometrics literature, presents a comprehensive review of theoretical and applied concepts in modeling economic and social time series.
Book Synopsis Practical Time Series Analysis by : Aileen Nielsen
Download or read book Practical Time Series Analysis written by Aileen Nielsen and published by O'Reilly Media. This book was released on 2019-09-20 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
Book Synopsis Forecasting: principles and practice by : Rob J Hyndman
Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Book Synopsis Time Series Analysis Univariate and Multivariate Methods by : William W. S. Wei
Download or read book Time Series Analysis Univariate and Multivariate Methods written by William W. S. Wei and published by Pearson. This book was released on 2018-03-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.
Download or read book A Very British Affair written by T. Mills and published by Springer. This book was released on 2012-11-27 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the major themes of time series analysis from its formal beginnings in the early part of the 20th century to the present day through the research of six distinguished British statisticians, all of whose work is characterised by the British traits of pragmatism and the desire to solve practical problems of importance.
Book Synopsis Introduction to Time Series and Forecasting by : Peter J. Brockwell
Download or read book Introduction to Time Series and Forecasting written by Peter J. Brockwell and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.
Book Synopsis Introduction to Time Series Analysis by : Mark Pickup
Download or read book Introduction to Time Series Analysis written by Mark Pickup and published by SAGE Publications. This book was released on 2014-10-15 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing time series methods and their application in social science research, this practical guide to time series models is the first in the field written for a non-econometrics audience. Giving readers the tools they need to apply models to their own research, Introduction to Time Series Analysis, by Mark Pickup, demonstrates the use of—and the assumptions underlying—common models of time series data including finite distributed lag; autoregressive distributed lag; moving average; differenced data; and GARCH, ARMA, ARIMA, and error correction models. “This volume does an excellent job of introducing modern time series analysis to social scientists who are already familiar with basic statistics and the general linear model.” —William G. Jacoby, Michigan State University
Book Synopsis An Introduction to Discrete-Valued Time Series by : Christian H. Weiss
Download or read book An Introduction to Discrete-Valued Time Series written by Christian H. Weiss and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: A much-needed introduction to the field of discrete-valued time series, with a focus on count-data time series Time series analysis is an essential tool in a wide array of fields, including business, economics, computer science, epidemiology, finance, manufacturing and meteorology, to name just a few. Despite growing interest in discrete-valued time series—especially those arising from counting specific objects or events at specified times—most books on time series give short shrift to that increasingly important subject area. This book seeks to rectify that state of affairs by providing a much needed introduction to discrete-valued time series, with particular focus on count-data time series. The main focus of this book is on modeling. Throughout numerous examples are provided illustrating models currently used in discrete-valued time series applications. Statistical process control, including various control charts (such as cumulative sum control charts), and performance evaluation are treated at length. Classic approaches like ARMA models and the Box-Jenkins program are also featured with the basics of these approaches summarized in an Appendix. In addition, data examples, with all relevant R code, are available on a companion website. Provides a balanced presentation of theory and practice, exploring both categorical and integer-valued series Covers common models for time series of counts as well as for categorical time series, and works out their most important stochastic properties Addresses statistical approaches for analyzing discrete-valued time series and illustrates their implementation with numerous data examples Covers classical approaches such as ARMA models, Box-Jenkins program and how to generate functions Includes dataset examples with all necessary R code provided on a companion website An Introduction to Discrete-Valued Time Series is a valuable working resource for researchers and practitioners in a broad range of fields, including statistics, data science, machine learning, and engineering. It will also be of interest to postgraduate students in statistics, mathematics and economics.
Book Synopsis Regression and Time Series Model Selection by : Allan D. R. McQuarrie
Download or read book Regression and Time Series Model Selection written by Allan D. R. McQuarrie and published by World Scientific. This book was released on 1998 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.
Book Synopsis Introduction to Time Series Analysis and Forecasting by : Douglas C. Montgomery
Download or read book Introduction to Time Series Analysis and Forecasting written by Douglas C. Montgomery and published by John Wiley & Sons. This book was released on 2015-04-21 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "...[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics." -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts.
Download or read book R Cookbook written by Paul Teetor and published by "O'Reilly Media, Inc.". This book was released on 2011-03-03 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author
Book Synopsis Time Series Analysis and Its Applications by : Robert H. Shumway
Download or read book Time Series Analysis and Its Applications written by Robert H. Shumway and published by . This book was released on 2014-01-15 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Time Series Modeling of Neuroscience Data by : Tohru Ozaki
Download or read book Time Series Modeling of Neuroscience Data written by Tohru Ozaki and published by CRC Press. This book was released on 2012-01-26 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in brain science measurement technology have given researchers access to very large-scale time series data such as EEG/MEG data (20 to 100 dimensional) and fMRI (140,000 dimensional) data. To analyze such massive data, efficient computational and statistical methods are required.Time Series Modeling of Neuroscience Data shows how to