Theory and Applications of Special Functions

Download Theory and Applications of Special Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387242333
Total Pages : 497 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Theory and Applications of Special Functions by : Mourad E. H. Ismail

Download or read book Theory and Applications of Special Functions written by Mourad E. H. Ismail and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of articles on various aspects of q-series and special functions dedicated to Mizan Rahman. It also includes an article by Askey, Ismail, and Koelink on Rahman’s mathematical contributions and how they influenced the recent upsurge in the subject.

Theory and Applications of Special Functions for Scientists and Engineers

Download Theory and Applications of Special Functions for Scientists and Engineers PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9789813363366
Total Pages : 0 pages
Book Rating : 4.3/5 (633 download)

DOWNLOAD NOW!


Book Synopsis Theory and Applications of Special Functions for Scientists and Engineers by : Xiao-Jun Yang

Download or read book Theory and Applications of Special Functions for Scientists and Engineers written by Xiao-Jun Yang and published by Springer. This book was released on 2023-01-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the knowledge of the newly-established supertrigonometric and superhyperbolic functions with the special functions such as Mittag-Leffler, Wiman, Prabhakar, Miller-Ross, Rabotnov, Lorenzo-Hartley, Sonine, Wright and Kohlrausch-Williams-Watts functions, Gauss hypergeometric series and Clausen hypergeometric series. The special functions can be considered to represent a great many of the real-world phenomena in mathematical physics, engineering and other applied sciences. The audience benefits of new and original information and references in the areas of the special functions applied to model the complex problems with the power-law behaviors. The results are important and interesting for scientists and engineers to represent the complex phenomena arising in applied sciences therefore graduate students and researchers in mathematics, physics and engineering might find this book appealing.

Special Functions

Download Special Functions PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 : 9780198505730
Total Pages : 318 pages
Book Rating : 4.5/5 (57 download)

DOWNLOAD NOW!


Book Synopsis Special Functions by : Sergeĭ I︠U︡rʹevich Slavi︠a︡nov

Download or read book Special Functions written by Sergeĭ I︠U︡rʹevich Slavi︠a︡nov and published by Oxford University Press, USA. This book was released on 2000 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of this book is the theory of special functions, not considered as a list of functions exhibiting a certain range of properties, but based on the unified study of singularities of second-order ordinary differential equations in the complex domain. The number and characteristics of the singularities serve as a basis for classification of each individual special function. Links between linear special functions (as solutions of linear second-order equations), and non-linear special functions (as solutions of Painlevé equations) are presented as a basic and new result. Many applications to different areas of physics are shown and discussed. The book is written from a practical point of view and will address all those scientists whose work involves applications of mathematical methods. Lecturers, graduate students and researchers will find this a useful text and reference work.

Theory and Application of Special Functions

Download Theory and Application of Special Functions PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483216160
Total Pages : 573 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Theory and Application of Special Functions by : Richard Askey

Download or read book Theory and Application of Special Functions written by Richard Askey and published by Academic Press. This book was released on 2014-05-10 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory and Application of Special Functions contains the proceedings of the Advanced Seminar on Special Functions sponsored by the Mathematics Research Center of the University of Wisconsin-Madison and held from March 31 to April 2, 1975. The seminar tackled the theory and application of special functions and covered topics ranging from the asymptotic estimation of special functions to association schemes and coding theory. Some interesting results, conjectures, and problems are given. Comprised of 13 chapters, this book begins with a survey of computational methods in special functions, followed by a discussion on unsolved problems in the asymptotic estimation of special functions. The reader is then introduced to periodic Bernoulli numbers, summation formulas, and applications; problems and prospects for basic hypergeometric functions; and linear growth models with many types and multidimensional Hahn polynomials. Subsequent chapters explore two-variable analogues of the classical orthogonal polynomials; special functions of matrix and single argument in statistics; and some properties of the determinants of orthogonal polynomials. This monograph is intended primarily for students and practitioners of mathematics.

The H-Function

Download The H-Function PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441909168
Total Pages : 276 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis The H-Function by : A.M. Mathai

Download or read book The H-Function written by A.M. Mathai and published by Springer Science & Business Media. This book was released on 2009-10-10 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.

Special Functions

Download Special Functions PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521789882
Total Pages : 684 pages
Book Rating : 4.7/5 (898 download)

DOWNLOAD NOW!


Book Synopsis Special Functions by : George E. Andrews

Download or read book Special Functions written by George E. Andrews and published by Cambridge University Press. This book was released on 1999 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.

Special Functions of Mathematics for Engineers

Download Special Functions of Mathematics for Engineers PDF Online Free

Author :
Publisher : SPIE Press
ISBN 13 : 9780819426161
Total Pages : 512 pages
Book Rating : 4.4/5 (261 download)

DOWNLOAD NOW!


Book Synopsis Special Functions of Mathematics for Engineers by : Larry C. Andrews

Download or read book Special Functions of Mathematics for Engineers written by Larry C. Andrews and published by SPIE Press. This book was released on 1998 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern engineering and physical science applications demand a thorough knowledge of applied mathematics, particularly special functions. These typically arise in applications such as communication systems, electro-optics, nonlinear wave propagation, electromagnetic theory, electric circuit theory, and quantum mechanics. This text systematically introduces special functions and explores their properties and applications in engineering and science.

The Implicit Function Theorem

Download The Implicit Function Theorem PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461200598
Total Pages : 168 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis The Implicit Function Theorem by : Steven G. Krantz

Download or read book The Implicit Function Theorem written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2012-11-26 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implicit function theorem is part of the bedrock of mathematical analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for C^k functions, (ii) formulations in other function spaces, (iii) formulations for non- smooth functions, (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash--Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present volume. The history of the implicit function theorem is a lively and complex story, and is intimately bound up with the development of fundamental ideas in analysis and geometry. This entire development, together with mathematical examples and proofs, is recounted for the first time here. It is an exciting tale, and it continues to evolve. "The Implicit Function Theorem" is an accessible and thorough treatment of implicit and inverse function theorems and their applications. It will be of interest to mathematicians, graduate/advanced undergraduate students, and to those who apply mathematics. The book unifies disparate ideas that have played an important role in modern mathematics. It serves to document and place in context a substantial body of mathematical ideas.

Theory and Applications of Special Functions for Scientists and Engineers

Download Theory and Applications of Special Functions for Scientists and Engineers PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9813363347
Total Pages : 910 pages
Book Rating : 4.8/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Theory and Applications of Special Functions for Scientists and Engineers by : Xiao-Jun Yang

Download or read book Theory and Applications of Special Functions for Scientists and Engineers written by Xiao-Jun Yang and published by Springer Nature. This book was released on 2022-01-14 with total page 910 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the knowledge of the newly-established supertrigonometric and superhyperbolic functions with the special functions such as Mittag-Leffler, Wiman, Prabhakar, Miller-Ross, Rabotnov, Lorenzo-Hartley, Sonine, Wright and Kohlrausch-Williams-Watts functions, Gauss hypergeometric series and Clausen hypergeometric series. The special functions can be considered to represent a great many of the real-world phenomena in mathematical physics, engineering and other applied sciences. The audience benefits of new and original information and references in the areas of the special functions applied to model the complex problems with the power-law behaviors. The results are important and interesting for scientists and engineers to represent the complex phenomena arising in applied sciences therefore graduate students and researchers in mathematics, physics and engineering might find this book appealing.

Special Functions and the Theory of Group Representations

Download Special Functions and the Theory of Group Representations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821815724
Total Pages : 613 pages
Book Rating : 4.8/5 (157 download)

DOWNLOAD NOW!


Book Synopsis Special Functions and the Theory of Group Representations by : Naum I͡Akovlevich Vilenkin

Download or read book Special Functions and the Theory of Group Representations written by Naum I͡Akovlevich Vilenkin and published by American Mathematical Soc.. This book was released on 1968 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: A standard scheme for a relation between special functions and group representation theory is the following: certain classes of special functions are interpreted as matrix elements of irreducible representations of a certain Lie group, and then properties of special functions are related to (and derived from) simple well-known facts of representation theory. The book combines the majority of known results in this direction. In particular, the author describes connections between the exponential functions and the additive group of real numbers (Fourier analysis), Legendre and Jacobi polynomials and representations of the group $SU(2)$, and the hypergeometric function and representations of the group $SL(2,R)$, as well as many other classes of special functions.

Representation of Lie Groups and Special Functions

Download Representation of Lie Groups and Special Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401728852
Total Pages : 518 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Representation of Lie Groups and Special Functions by : N.Ja. Vilenkin

Download or read book Representation of Lie Groups and Special Functions written by N.Ja. Vilenkin and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.

Analytic Number Theory, Approximation Theory, and Special Functions

Download Analytic Number Theory, Approximation Theory, and Special Functions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 149390258X
Total Pages : 873 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Analytic Number Theory, Approximation Theory, and Special Functions by : Gradimir V. Milovanović

Download or read book Analytic Number Theory, Approximation Theory, and Special Functions written by Gradimir V. Milovanović and published by Springer. This book was released on 2014-07-08 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.

From Gauss to Painlevé

Download From Gauss to Painlevé PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3322901637
Total Pages : 355 pages
Book Rating : 4.3/5 (229 download)

DOWNLOAD NOW!


Book Synopsis From Gauss to Painlevé by : Katsunori Iwasaki

Download or read book From Gauss to Painlevé written by Katsunori Iwasaki and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the modern theory of special functions. It focuses on the nonlinear Painlevé differential equation and its solutions, the so-called Painlevé functions. It contains modern treatments of the Gauss hypergeometric differential equation, monodromy of second order Fuchsian equations and nonlinear differential equations near singular points.The book starts from an elementary level requiring only basic notions of differential equations, function theory and group theory. Graduate students should be able to work with the text."The authors do an excellent job of presenting both the historical and mathematical details of the subject in a form accessible to any mathematician or physicist." (MPR in "The American Mathematical Monthly" März 1992.

Generalized Functions Theory and Technique

Download Generalized Functions Theory and Technique PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468400355
Total Pages : 474 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Generalized Functions Theory and Technique by : Ram P. Kanwal

Download or read book Generalized Functions Theory and Technique written by Ram P. Kanwal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.

Orthogonal Polynomials and Special Functions

Download Orthogonal Polynomials and Special Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540310622
Total Pages : 432 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Orthogonal Polynomials and Special Functions by : Francisco Marcellàn

Download or read book Orthogonal Polynomials and Special Functions written by Francisco Marcellàn and published by Springer Science & Business Media. This book was released on 2006-06-19 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.

Bernstein Functions

Download Bernstein Functions PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110269333
Total Pages : 424 pages
Book Rating : 4.1/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Bernstein Functions by : René L. Schilling

Download or read book Bernstein Functions written by René L. Schilling and published by Walter de Gruyter. This book was released on 2012-10-01 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bernstein functions appear in various fields of mathematics, e.g. probability theory, potential theory, operator theory, functional analysis and complex analysis – often with different definitions and under different names. Among the synonyms are `Laplace exponent' instead of Bernstein function, and complete Bernstein functions are sometimes called `Pick functions', `Nevanlinna functions' or `operator monotone functions'. This monograph – now in its second revised and extended edition – offers a self-contained and unified approach to Bernstein functions and closely related function classes, bringing together old and establishing new connections. For the second edition the authors added a substantial amount of new material. As in the first edition Chapters 1 to 11 contain general material which should be accessible to non-specialists, while the later Chapters 12 to 15 are devoted to more specialized topics. An extensive list of complete Bernstein functions with their representations is provided.

Famous Functions in Number Theory

Download Famous Functions in Number Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 147042195X
Total Pages : 218 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Famous Functions in Number Theory by : Bowen Kerins

Download or read book Famous Functions in Number Theory written by Bowen Kerins and published by American Mathematical Soc.. This book was released on 2015-10-15 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for precollege teachers by a collaborative of teachers, educators, and mathematicians, Famous Functions in Number Theory is based on a course offered in the Summer School Teacher Program at the Park City Mathematics Institute. But this book isn't a "course" in the traditional sense. It consists of a carefully sequenced collection of problem sets designed to develop several interconnected mathematical themes, and one of the goals of the problem sets is for readers to uncover these themes for themselves. Famous Functions in Number Theory introduces readers to the use of formal algebra in number theory. Through numerical experiments, participants learn how to use polynomial algebra as a bookkeeping mechanism that allows them to count divisors, build multiplicative functions, and compile multiplicative functions in a certain way that produces new ones. One capstone of the investigations is a beautiful result attributed to Fermat that determines the number of ways a positive integer can be written as a sum of two perfect squares. Famous Functions in Number Theory is a volume of the book series "IAS/PCMI-The Teacher Program Series" published by the American Mathematical Society. Each volume in that series covers the content of one Summer School Teacher Program year and is independent of the rest. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.