Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Singular Locus Of A Schubert Variety
Download The Singular Locus Of A Schubert Variety full books in PDF, epub, and Kindle. Read online The Singular Locus Of A Schubert Variety ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Singular Loci of Schubert Varieties by : Sara Sarason
Download or read book Singular Loci of Schubert Varieties written by Sara Sarason and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Singular Loci of Schubert Varieties" is a unique work at the crossroads of representation theory, algebraic geometry, and combinatorics. Over the past 20 years, many research articles have been written on the subject in notable journals. In this work, Billey and Lakshmibai have recreated and restructured the various theories and approaches of those articles and present a clearer understanding of this important subdiscipline of Schubert varieties – namely singular loci. The main focus, therefore, is on the computations for the singular loci of Schubert varieties and corresponding tangent spaces. The methods used include standard monomial theory, the nil Hecke ring, and Kazhdan-Lusztig theory. New results are presented with sufficient examples to emphasize key points. A comprehensive bibliography, index, and tables – the latter not to be found elsewhere in the mathematics literature – round out this concise work. After a good introduction giving background material, the topics are presented in a systematic fashion to engage a wide readership of researchers and graduate students.
Download or read book Flag Varieties written by V Lakshmibai and published by Springer. This book was released on 2018-06-26 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the importance of flag varieties in geometric objects and elucidates its richness as interplay of geometry, combinatorics and representation theory. The book presents a discussion on the representation theory of complex semisimple Lie algebras, as well as the representation theory of semisimple algebraic groups. In addition, the book also discusses the representation theory of symmetric groups. In the area of algebraic geometry, the book gives a detailed account of the Grassmannian varieties, flag varieties, and their Schubert subvarieties. Many of the geometric results admit elegant combinatorial description because of the root system connections, a typical example being the description of the singular locus of a Schubert variety. This discussion is carried out as a consequence of standard monomial theory. Consequently, this book includes standard monomial theory and some important applications—singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory. The two recent results on Schubert varieties in the Grassmannian have also been included in this book. The first result gives a free resolution of certain Schubert singularities. The second result is about certain Levi subgroup actions on Schubert varieties in the Grassmannian and derives some interesting geometric and representation-theoretic consequences.
Book Synopsis Symmetric Functions, Schubert Polynomials and Degeneracy Loci by : Laurent Manivel
Download or read book Symmetric Functions, Schubert Polynomials and Degeneracy Loci written by Laurent Manivel and published by American Mathematical Soc.. This book was released on 2001 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text grew out of an advanced course taught by the author at the Fourier Institute (Grenoble, France). It serves as an introduction to the combinatorics of symmetric functions, more precisely to Schur and Schubert polynomials. Also studied is the geometry of Grassmannians, flag varieties, and especially, their Schubert varieties. This book examines profound connections that unite these two subjects. The book is divided into three chapters. The first is devoted to symmetricfunctions and especially to Schur polynomials. These are polynomials with positive integer coefficients in which each of the monomials correspond to a Young tableau with the property of being ``semistandard''. The second chapter is devoted to Schubert polynomials, which were discovered by A. Lascoux andM.-P. Schutzenberger who deeply probed their combinatorial properties. It is shown, for example, that these polynomials support the subtle connections between problems of enumeration of reduced decompositions of permutations and the Littlewood-Richardson rule, a particularly efficacious version of which may be derived from these connections. The final chapter is geometric. It is devoted to Schubert varieties, subvarieties of Grassmannians, and flag varieties defined by certain incidenceconditions with fixed subspaces. This volume makes accessible a number of results, creating a solid stepping stone for scaling more ambitious heights in the area. The author's intent was to remain elementary: The first two chapters require no prior knowledge, the third chapter uses some rudimentary notionsof topology and algebraic geometry. For this reason, a comprehensive appendix on the topology of algebraic varieties is provided. This book is the English translation of a text previously published in French.
Book Synopsis The Grassmannian Variety by : V. Lakshmibai
Download or read book The Grassmannian Variety written by V. Lakshmibai and published by Springer. This book was released on 2015-09-25 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive treatment of the Grassmannian varieties and their Schubert subvarieties, focusing on the geometric and representation-theoretic aspects of Grassmannian varieties. Research of Grassmannian varieties is centered at the crossroads of commutative algebra, algebraic geometry, representation theory, and combinatorics. Therefore, this text uniquely presents an exciting playing field for graduate students and researchers in mathematics, physics, and computer science, to expand their knowledge in the field of algebraic geometry. The standard monomial theory (SMT) for the Grassmannian varieties and their Schubert subvarieties are introduced and the text presents some important applications of SMT including the Cohen–Macaulay property, normality, unique factoriality, Gorenstein property, singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory. This text would serve well as a reference book for a graduate work on Grassmannian varieties and would be an excellent supplementary text for several courses including those in geometry of spherical varieties, Schubert varieties, advanced topics in geometric and differential topology, representation theory of compact and reductive groups, Lie theory, toric varieties, geometric representation theory, and singularity theory. The reader should have some familiarity with commutative algebra and algebraic geometry.
Book Synopsis Determinantal Rings by : Winfried Bruns
Download or read book Determinantal Rings written by Winfried Bruns and published by Springer. This book was released on 2006-11-14 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.
Book Synopsis Topics in Cohomological Studies of Algebraic Varieties by : Piotr Pragacz
Download or read book Topics in Cohomological Studies of Algebraic Varieties written by Piotr Pragacz and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume study various cohomological aspects of algebraic varieties: - characteristic classes of singular varieties; - geometry of flag varieties; - cohomological computations for homogeneous spaces; - K-theory of algebraic varieties; - quantum cohomology and Gromov-Witten theory. The main purpose is to give comprehensive introductions to the above topics through a series of "friendly" texts starting from a very elementary level and ending with the discussion of current research. In the articles, the reader will find classical results and methods as well as new ones. Numerous examples will help to understand the mysteries of the cohomological theories presented. The book will be a useful guide to research in the above-mentioned areas. It is adressed to researchers and graduate students in algebraic geometry, algebraic topology, and singularity theory, as well as to mathematicians interested in homogeneous varieties and symmetric functions. Most of the material exposed in the volume has not appeared in books before. Contributors: Paolo Aluffi Michel Brion Anders Skovsted Buch Haibao Duan Ali Ulas Ozgur Kisisel Piotr Pragacz Jörg Schürmann Marek Szyjewski Harry Tamvakis
Book Synopsis Schubert Calculus and Its Applications in Combinatorics and Representation Theory by : Jianxun Hu
Download or read book Schubert Calculus and Its Applications in Combinatorics and Representation Theory written by Jianxun Hu and published by Springer Nature. This book was released on 2020-10-24 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.
Book Synopsis Lie Theory and Geometry by : Jean-Luc Brylinski
Download or read book Lie Theory and Geometry written by Jean-Luc Brylinski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, dedicated to Bertram Kostant on the occasion of his 65th birthday, is a collection of 22 invited papers by leading mathematicians working in Lie theory, geometry, algebra, and mathematical physics. Kostant’s fundamental work in all these areas has provided deep new insights and connections, and has created new fields of research. The papers gathered here present original research articles as well as expository papers, broadly reflecting the range of Kostant’s work.
Book Synopsis Kac-Moody Groups, their Flag Varieties and Representation Theory by : Shrawan Kumar
Download or read book Kac-Moody Groups, their Flag Varieties and Representation Theory written by Shrawan Kumar and published by Springer Science & Business Media. This book was released on 2002-09-10 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Most of these topics appear here for the first time in book form. Many of them are interesting even in the classical case of semi-simple algebraic groups. Some appendices recall useful results from other areas, so the work may be considered self-contained, although some familiarity with semi-simple Lie algebras or algebraic groups is helpful. It is clear that this book is a valuable reference for all those interested in flag varieties and representation theory in the semi-simple or Kac-Moody case." —MATHEMATICAL REVIEWS "A lot of different topics are treated in this monumental work. . . . many of the topics of the book will be useful for those only interested in the finite-dimensional case. The book is self contained, but is on the level of advanced graduate students. . . . For the motivated reader who is willing to spend considerable time on the material, the book can be a gold mine. " —ZENTRALBLATT MATH
Book Synopsis Buildings and Schubert Schemes by : Carlos Contou-Carrere
Download or read book Buildings and Schubert Schemes written by Carlos Contou-Carrere and published by CRC Press. This book was released on 2017-03-03 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of this book introduces the Schubert Cells and varieties of the general linear group Gl (k^(r+1)) over a field k according to Ehresmann geometric way. Smooth resolutions for these varieties are constructed in terms of Flag Configurations in k^(r+1) given by linear graphs called Minimal Galleries. In the second part, Schubert Schemes, the Universal Schubert Scheme and their Canonical Smooth Resolution, in terms of the incidence relation in a Tits relative building are constructed for a Reductive Group Scheme as in Grothendieck's SGAIII. This is a topic where algebra and algebraic geometry, combinatorics, and group theory interact in unusual and deep ways.
Book Synopsis Kac-Moody Groups, their Flag Varieties and Representation Theory by : Shrawan Kumar
Download or read book Kac-Moody Groups, their Flag Varieties and Representation Theory written by Shrawan Kumar and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kac-Moody Lie algebras 9 were introduced in the mid-1960s independently by V. Kac and R. Moody, generalizing the finite-dimensional semisimple Lie alge bras which we refer to as the finite case. The theory has undergone tremendous developments in various directions and connections with diverse areas abound, including mathematical physics, so much so that this theory has become a stan dard tool in mathematics. A detailed treatment of the Lie algebra aspect of the theory can be found in V. Kac's book [Kac-90l This self-contained work treats the algebro-geometric and the topological aspects of Kac-Moody theory from scratch. The emphasis is on the study of the Kac-Moody groups 9 and their flag varieties XY, including their detailed construction, and their applications to the representation theory of g. In the finite case, 9 is nothing but a semisimple Y simply-connected algebraic group and X is the flag variety 9 /Py for a parabolic subgroup p y C g.
Book Synopsis A Tribute to C.S. Seshadri by : Lakshmibai V.
Download or read book A Tribute to C.S. Seshadri written by Lakshmibai V. and published by Springer. This book was released on 2003-01-01 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Schubert Varieties and Degeneracy Loci by : William Fulton
Download or read book Schubert Varieties and Degeneracy Loci written by William Fulton and published by Springer. This book was released on 2006-11-13 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Schubert varieties and degeneracy loci have a long history in mathematics, starting from questions about loci of matrices with given ranks. These notes, from a summer school in Thurnau, aim to give an introduction to these topics, and to describe recent progress on these problems. There are interesting interactions with the algebra of symmetric functions and combinatorics, as well as the geometry of flag manifolds and intersection theory and algebraic geometry.
Download or read book Young Tableaux written by William Fulton and published by Cambridge University Press. This book was released on 1997 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes combinatorics involving Young tableaux and their uses in representation theory and algebraic geometry.
Book Synopsis Standard Monomial Theory by : V. Lakshmibai
Download or read book Standard Monomial Theory written by V. Lakshmibai and published by Springer Science & Business Media. This book was released on 2007-12-23 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Schubert varieties provide an inductive tool for studying flag varieties. This book is mainly a detailed account of a particularly interesting instance of their occurrence: namely, in relation to classical invariant theory. More precisely, it is about the connection between the first and second fundamental theorems of classical invariant theory on the one hand and standard monomial theory for Schubert varieties in certain special flag varieties on the other.
Book Synopsis Representations of Groups by : Bruce Normansell Allison
Download or read book Representations of Groups written by Bruce Normansell Allison and published by American Mathematical Soc.. This book was released on 1995 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Representations of Groups contains papers presented at the Canadian Mathematical Society Annual Seminar held in June 1994, in Banff, Alberta, Canada.
Book Synopsis Classical Algebraic Geometry by : Igor V. Dolgachev
Download or read book Classical Algebraic Geometry written by Igor V. Dolgachev and published by Cambridge University Press. This book was released on 2012-08-16 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.