Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Physics Of Turbulence In The Boundary Layer
Download The Physics Of Turbulence In The Boundary Layer full books in PDF, epub, and Kindle. Read online The Physics Of Turbulence In The Boundary Layer ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Boundary-Layer Theory by : Hermann Schlichting (Deceased)
Download or read book Boundary-Layer Theory written by Hermann Schlichting (Deceased) and published by Springer. This book was released on 2016-10-04 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Book Synopsis Turbulence and Dispersion in the Planetary Boundary Layer by : Francesco Tampieri
Download or read book Turbulence and Dispersion in the Planetary Boundary Layer written by Francesco Tampieri and published by Springer. This book was released on 2016-09-28 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive review of our current understanding of the planetary boundary layer, particularly the turbulent exchanges of momentum, heat and passive scalars between the surface of the Earth and the atmosphere. It presents and discusses the observations and the theory of the turbulent boundary layer, both for homogeneous and more realistic heterogeneous surface conditions, as well as the dispersion of tracers. Lastly it addresses the main problems arising due to turbulence in weather, climate and atmospheric composition numerical models. Written for postgraduate and advanced undergraduate-level students and atmospheric researchers, it is also of interest to anyone wanting to understand the findings and obtain an update on problems that have yet to be solved.
Book Synopsis An Introduction to Boundary Layer Meteorology by : Roland B. Stull
Download or read book An Introduction to Boundary Layer Meteorology written by Roland B. Stull and published by Springer Science & Business Media. This book was released on 1988-07-31 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of the excitement in boundary-layer meteorology is the challenge associated with turbulent flow - one of the unsolved problems in classical physics. An additional attraction of the filed is the rich diversity of topics and research methods that are collected under the umbrella-term of boundary-layer meteorology. The flavor of the challenges and the excitement associated with the study of the atmospheric boundary layer are captured in this textbook. Fundamental concepts and mathematics are presented prior to their use, physical interpretations of the terms in equations are given, sample data are shown, examples are solved, and exercises are included. The work should also be considered as a major reference and as a review of the literature, since it includes tables of parameterizatlons, procedures, filed experiments, useful constants, and graphs of various phenomena under a variety of conditions. It is assumed that the work will be used at the beginning graduate level for students with an undergraduate background in meteorology, but the author envisions, and has catered for, a heterogeneity in the background and experience of his readers.
Download or read book Fluid Mechanics written by L D Landau and published by Elsevier. This book was released on 2013-09-03 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid Mechanics, Second Edition deals with fluid mechanics, that is, the theory of the motion of liquids and gases. Topics covered range from ideal fluids and viscous fluids to turbulence, boundary layers, thermal conduction, and diffusion. Surface phenomena, sound, and shock waves are also discussed, along with gas flow, combustion, superfluids, and relativistic fluid dynamics. This book is comprised of 16 chapters and begins with an overview of the fundamental equations of fluid dynamics, including Euler's equation and Bernoulli's equation. The reader is then introduced to the equations of motion of a viscous fluid; energy dissipation in an incompressible fluid; damping of gravity waves; and the mechanism whereby turbulence occurs. The following chapters explore the laminar boundary layer; thermal conduction in fluids; dynamics of diffusion of a mixture of fluids; and the phenomena that occur near the surface separating two continuous media. The energy and momentum of sound waves; the direction of variation of quantities in a shock wave; one- and two-dimensional gas flow; and the intersection of surfaces of discontinuity are also also considered. This monograph will be of interest to theoretical physicists.
Book Synopsis Turbulence In Coastal And Civil Engineering by : B Mutlu Sumer
Download or read book Turbulence In Coastal And Civil Engineering written by B Mutlu Sumer and published by World Scientific. This book was released on 2020-03-23 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the subject of turbulence encountered in coastal and civil engineering.The primary aim of the book is to describe turbulence processes including transition to turbulence; mean and fluctuating flows in channels/pipes, and in currents; wave boundary layers (including boundary layers under solitary waves); streaming processes in wave boundary layers; turbulence processes in breaking waves including breaking solitary waves; turbulence processes such as bursting process and their implications for sediment transport; flow resistance in steady and wave boundary layers; and turbulent diffusion and dispersion processes in the coastal and river environment, including sediment transport due to diffusion/dispersion.Both phenomenological and statistical theories are described in great detail. Turbulence modelling is also described, and several examples for modelling of turbulence in steady flow and wave boundary layers are presented.The book ends with a chapter containing hands-on exercises on a wide variety of turbulent flows including experimental study of turbulence in an open-channel flow, using Laser Doppler Anemometry; Statistical, correlation and spectral analysis of turbulent air jet flow; Turbulence modelling of wave boundary layer flows; and numerical modelling of dispersion in a turbulent boundary layer, a set of exercises used by the authors in their Masters classes over many years.Although the book is essentially intended for professionals and researchers in the area of Coastal and Civil Engineering, and as a text book for graduate/post graduate students, the contents of the book will, however, additionally provide sufficient background in the study of turbulent flows relevant to many other disciplines, such as Wind Engineering, Mechanical Engineering, and Environmental Engineering.
Book Synopsis The Structure of Turbulent Shear Flow by : A. A. R. Townsend
Download or read book The Structure of Turbulent Shear Flow written by A. A. R. Townsend and published by Cambridge University Press. This book was released on 1976 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.
Book Synopsis The Atmospheric Boundary Layer by : J. R. Garratt
Download or read book The Atmospheric Boundary Layer written by J. R. Garratt and published by Cambridge University Press. This book was released on 1994-04-21 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives a comprehensive and lucid account of the science of the atmospheric boundary layer (ABL). There is an emphasis on the application of the ABL to numerical modelling of the climate. The book comprises nine chapters, several appendices (data tables, information sources, physical constants) and an extensive reference list. Chapter 1 serves as an introduction, with chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and sea. The structure of the clear-sky, thermally stratified ABL is treated in chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant, since the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate simulation.
Book Synopsis Boundary Layer Analysis by : Joseph A. Schetz
Download or read book Boundary Layer Analysis written by Joseph A. Schetz and published by AIAA Education. This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relevant to aerospace, mechanical, and civil engineers Boundary Layer Analysis, Second Edition spans the entire range of viscous fluid flows of engineering interest - from low-speed to hypersonic flows - introducing and analyzing laminar, transitional, and turbulent flows; the physics of turbulent shear flows; and turbulence models. It offers concurrent treatment of momentum, heat, and mass transfer, covering modern computational methods as well as analytical methods that are used widely in preliminary design, especially for design optimization studies. Boundary Layer Analysis, Second Edition features worked examples and homework problems employing user-friendly JAVA applets for boundary layer calculations including numerical methods. New to the second edition is a chapter introducing Navier-Stokes computational fluid dynamics.
Book Synopsis Intermediate Fluid Mechanics by : James Liburdy
Download or read book Intermediate Fluid Mechanics written by James Liburdy and published by . This book was released on 2021-09-16 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Author :National Aeronautics and Space Administration (NASA) Publisher :Createspace Independent Publishing Platform ISBN 13 :9781722879082 Total Pages :32 pages Book Rating :4.8/5 (79 download)
Book Synopsis The Physics of Turbulence in the Boundary Layer by : National Aeronautics and Space Administration (NASA)
Download or read book The Physics of Turbulence in the Boundary Layer written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-13 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: The geometry of the velocity field in a numerically simulated incompressible turbulent boundary layer over a flat plate at Re theta=670 has been studied using the invariants of the velocity gradient tensor. These invariants are computed at every grid point in the flow and used to form the discriminant. Of primary interest are those regions in the flow where the discriminant is positive; regions where, according to the characteristic equation, the eigenvalues of the velocity gradient tensor are complex. An observer moving with a frame of reference which is attached to a fluid particle lying within such a region would see a local flow pattern of the type stable-focus-stretching or unstable-focus-compressing. When the flow is visualized this way, continuous, connected, large-scale structures are revealed that extend from the point just below the buffer layer out to the beginning of the wake region. These structures are aligned with the mean shear close to the wall and arch in the cross-stream direction away from the wall. In some cases the structures observed are very similar to to the hairpin eddy vision of boundary layer structure proposed by Theodorsen. That the structure of the flow is revealed more effectively by the discriminant rather than by the vorticity is important and adds support to recent observations of the discriminant in a channel flow simulation. Of particular importance is the fact that the procedure does not require the use of an arbitrary threshold in the discriminant. Further analysis using computer flow visualization shows a high degree of spatial correlation between regions of positive discriminant, extreme negative pressure fluctuations and large instantaneous values of Reynolds shear stress. Kline, Stephen and Cantwell, Brian Unspecified Center NAG1-1610...
Book Synopsis Turbulence in Fluids by : Marcel Lesieur
Download or read book Turbulence in Fluids written by Marcel Lesieur and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence is a dangerous topic which is often at the origin of serious fights in the scientific meetings devoted to it since it represents extremely different points of view, all of which have in common their complexity, as well as an inability to solve the problem. It is even difficult to agree on what exactly is the problem to be solved. Extremely schematically, two opposing points of view have been advocated during these last ten years: the first one is "statistical", and tries to model the evolution of averaged quantities of the flow. This com has followed the glorious trail of Taylor and Kolmogorov, munity, which believes in the phenomenology of cascades, and strongly disputes the possibility of any coherence or order associated to turbulence. On the other bank of the river stands the "coherence among chaos" community, which considers turbulence from a purely deterministic po int of view, by studying either the behaviour of dynamical systems, or the stability of flows in various situations. To this community are also associated the experimentalists who seek to identify coherent structures in shear flows.
Author :Meinhard T. Schobeiri Publisher :Springer Science & Business Media ISBN 13 :3642115942 Total Pages :517 pages Book Rating :4.6/5 (421 download)
Book Synopsis Fluid Mechanics for Engineers by : Meinhard T. Schobeiri
Download or read book Fluid Mechanics for Engineers written by Meinhard T. Schobeiri and published by Springer Science & Business Media. This book was released on 2010-03-27 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
Book Synopsis Modeling and Computation of Boundary-Layer Flows by : Tuncer Cebeci
Download or read book Modeling and Computation of Boundary-Layer Flows written by Tuncer Cebeci and published by Springer. This book was released on 2009-09-02 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of the book, Modeling and Computation of Boundary-Layer Flows^ extends the topic to include compressible flows. This implies the inclusion of the energy equation and non-constant fluid properties in the continuity and momentum equations. The necessary additions are included in new chapters, leaving the first nine chapters to serve as an introduction to incompressible flows and, therefore, as a platform for the extension. This part of the book can be used for a one semester course as described below. Improvements to the incompressible flows portion of the book include the removal of listings of computer programs and their description, and their incor poration in two CD-ROMs. A listing of the topics incorporated in the CD-ROM is provided before the index. In Chapter 7 there is a more extended discussion of initial conditions for three-dimensional flows, application of the characteristic box to a model problem and discussion of flow separation in three-dimensional laminar flows. There are also changes to Chapter 8, which now includes new sections on Tollmien-Schlichting and cross-flow instabilities and on the predic tion of transition with parabolised stability equations, and Chapter 9 provides a description of the rational behind interactive boundary-layer procedures.
Book Synopsis Turbulent Shear Layers in Supersonic Flow by : Alexander J. Smits
Download or read book Turbulent Shear Layers in Supersonic Flow written by Alexander J. Smits and published by Springer Science & Business Media. This book was released on 2006-05-11 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.
Book Synopsis Non-Newtonian Flow by : R. P. Chhabra
Download or read book Non-Newtonian Flow written by R. P. Chhabra and published by Elsevier. This book was released on 1999-08-19 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-Newtonian materials are encountered in virtually all of the chemical and process industries and a full understanding of their nature and flow characteristics is an essential requirement for engineers and scientists involved in their formulation and handling. This book will bridge the gap between much of the highly theoretical and mathematically complex work of the rheologist and the practical needs of those who have to design and operate plants in which these materials are handled and processed. At the same time, numerous references are included for the benefit of those who need to delve more deeply into the subject.The starting point for any work on non-newtonian fluids is their characterisation over the range of conditions to which they are likely to be subjected during manufacture or utilisation, and this topic is treated early on in the book in a chapter commissioned from an expert in the field of rheological measurements. Coverage of topics is extensive and this book offers a unique and rich selection of material including the flow of single phase and multiphase mixtures in pipes, in packed and fluidised bed systems, heat and mass transfer in boundary layers and in simple duct flows, and mixing etc.An important and novel feature of the book is the inclusion of a wide selection of worked examples to illustrate the methods of calculation. It also incorporates a large selection of problems for the reader to tackle himself.
Book Synopsis A First Course in Turbulence by : Henk Tennekes
Download or read book A First Course in Turbulence written by Henk Tennekes and published by MIT Press. This book was released on 2018-04-27 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of rivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book. The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved. In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout. A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets. Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients. The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and spectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.
Book Synopsis Statistical Fluid Mechanics, Volume II by : A. S. Monin
Download or read book Statistical Fluid Mechanics, Volume II written by A. S. Monin and published by Dover Publications. This book was released on 2007-06-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "If ever a field needed a definitive book, it is the study of turbulence; if ever a book on turbulence could be called definitive, it is this book." — Science Written by two of Russia's most eminent and productive scientists in turbulence, oceanography, and atmospheric physics, this two-volume survey is renowned for its clarity as well as its comprehensive treatment. The first volume begins with an outline of laminar and turbulent flow. The remainder of the book treats a variety of aspects of turbulence: its statistical and Lagrangian descriptions, shear flows near surfaces and free turbulence, the behavior of thermally stratified media, and diffusion. Volume Two continues and concludes the presentation. Topics include spectral functions, homogeneous fields, isotropic random fields, isotropic turbulence, self-preservation hypotheses, spectral energy transfer, the Millionshchikov hypothesis, acceleration fields, equations for higher moments and the closure problem, and turbulence in a compressible fluid. Additional subjects include general concepts of the local structure of turbulence at high Reynolds numbers, the theory of fully developed turbulence, the propagation of electromagnetic and acoustic waves through a turbulent medium, and the twinkling of stars. The book closes with a discussion of the functional formulation of the problem of turbulence, presenting the equations for the characteristic functional and methods for their solution.