Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Painleve Handbook
Download The Painleve Handbook full books in PDF, epub, and Kindle. Read online The Painleve Handbook ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Painlevé Handbook by : Robert Conte
Download or read book The Painlevé Handbook written by Robert Conte and published by Springer Nature. This book was released on 2020-11-07 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, now in its second edition, introduces the singularity analysis of differential and difference equations via the Painlevé test and shows how Painlevé analysis provides a powerful algorithmic approach to building explicit solutions to nonlinear ordinary and partial differential equations. It is illustrated with integrable equations such as the nonlinear Schrödinger equation, the Korteweg-de Vries equation, Hénon-Heiles type Hamiltonians, and numerous physically relevant examples such as the Kuramoto-Sivashinsky equation, the Kolmogorov-Petrovski-Piskunov equation, and mainly the cubic and quintic Ginzburg-Landau equations. Extensively revised, updated, and expanded, this new edition includes: recent insights from Nevanlinna theory and analysis on both the cubic and quintic Ginzburg-Landau equations; a close look at physical problems involving the sixth Painlevé function; and an overview of new results since the book’s original publication with special focus on finite difference equations. The book features tutorials, appendices, and comprehensive references, and will appeal to graduate students and researchers in both mathematics and the physical sciences.
Book Synopsis The Painlevé Handbook by : Robert M. Conte
Download or read book The Painlevé Handbook written by Robert M. Conte and published by Springer Science & Business Media. This book was released on 2008-11-23 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear differential or difference equations are encountered not only in mathematics, but also in many areas of physics (evolution equations, propagation of a signal in an optical fiber), chemistry (reaction-diffusion systems), and biology (competition of species). This book introduces the reader to methods allowing one to build explicit solutions to these equations. A prerequisite task is to investigate whether the chances of success are high or low, and this can be achieved without any a priori knowledge of the solutions, with a powerful algorithm presented in detail called the Painlevé test. If the equation under study passes the Painlevé test, the equation is presumed integrable. If on the contrary the test fails, the system is nonintegrable or even chaotic, but it may still be possible to find solutions. The examples chosen to illustrate these methods are mostly taken from physics. These include on the integrable side the nonlinear Schrödinger equation (continuous and discrete), the Korteweg-de Vries equation, the Hénon-Heiles Hamiltonians, on the nonintegrable side the complex Ginzburg-Landau equation (encountered in optical fibers, turbulence, etc), the Kuramoto-Sivashinsky equation (phase turbulence), the Kolmogorov-Petrovski-Piskunov equation (KPP, a reaction-diffusion model), the Lorenz model of atmospheric circulation and the Bianchi IX cosmological model. Written at a graduate level, the book contains tutorial text as well as detailed examples and the state of the art on some current research.
Book Synopsis Handbook of Nonlinear Partial Differential Equations, Second Edition by : Andrei D. Polyanin
Download or read book Handbook of Nonlinear Partial Differential Equations, Second Edition written by Andrei D. Polyanin and published by CRC Press. This book was released on 2016-04-19 with total page 1878 pages. Available in PDF, EPUB and Kindle. Book excerpt: New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with MapleTM, Mathematica®, and MATLAB® Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They outline the methods in a schematic, simplified manner and arrange the material in increasing order of complexity.
Book Synopsis Orthogonal Polynomials and Painlevé Equations by : Walter Van Assche
Download or read book Orthogonal Polynomials and Painlevé Equations written by Walter Van Assche and published by Cambridge University Press. This book was released on 2018 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are a number of intriguing connections between Painlev equations and orthogonal polynomials, and this book is one of the first to provide an introduction to these. Researchers in integrable systems and non-linear equations will find the many explicit examples where Painlev equations appear in mathematical analysis very useful. Those interested in the asymptotic behavior of orthogonal polynomials will also find the description of Painlev transcendants and their use for local analysis near certain critical points helpful to their work. Rational solutions and special function solutions of Painlev equations are worked out in detail, with a survey of recent results and an outline of their close relationship with orthogonal polynomials. Exercises throughout the book help the reader to get to grips with the material. The author is a leading authority on orthogonal polynomials, giving this work a unique perspective on Painlev equations.
Book Synopsis Divergent Series, Summability and Resurgence III by : Eric Delabaere
Download or read book Divergent Series, Summability and Resurgence III written by Eric Delabaere and published by Springer. This book was released on 2016-06-28 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equation. The resurgent analysis of singularities is pushed all the way up to the so-called “bridge equation”, which concentrates all information about the non-linear Stokes phenomenon at infinity of the First Painlevé equation. The third in a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists who are interested in divergent power series and related problems, such as the Stokes phenomenon. The prerequisites are a working knowledge of complex analysis at the first-year graduate level and of the theory of resurgence, as presented in volume 1.
Book Synopsis Handbook of Differential Equations: Ordinary Differential Equations by : Flaviano Battelli
Download or read book Handbook of Differential Equations: Ordinary Differential Equations written by Flaviano Battelli and published by Elsevier. This book was released on 2008-08-19 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is the fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ordinary differential equations, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience. - Covers a variety of problems in ordinary differential equations - Pure mathematical and real-world applications - Written for mathematicians and scientists of many related fields
Book Synopsis Geometric Methods in Physics XXXIX by : Piotr Kielanowski
Download or read book Geometric Methods in Physics XXXIX written by Piotr Kielanowski and published by Springer Nature. This book was released on 2023-07-21 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects papers based on lectures given at the XXXIX Workshop on Geometric Methods in Physics, held in Białystok, Poland in June 2022. These chapters provide readers an overview of cutting-edge research in geometry, analysis, and a wide variety of other areas. Specific topics include: Classical and quantum field theories Infinite-dimensional groups Integrable systems Lie groupoids and Lie algebroids Representation theory Geometric Methods in Physics XXXIX will be a valuable resource for mathematicians and physicists interested in recent developments at the intersection of these areas.
Book Synopsis Integrability, Supersymmetry and Coherent States by : Şengül Kuru
Download or read book Integrability, Supersymmetry and Coherent States written by Şengül Kuru and published by Springer. This book was released on 2019-07-12 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume shares and makes accessible new research lines and recent results in several branches of theoretical and mathematical physics, among them Quantum Optics, Coherent States, Integrable Systems, SUSY Quantum Mechanics, and Mathematical Methods in Physics. In addition to a selection of the contributions presented at the "6th International Workshop on New Challenges in Quantum Mechanics: Integrability and Supersymmetry", held in Valladolid, Spain, 27-30 June 2017, several high quality contributions from other authors are also included. The conference gathered 60 participants from many countries working in different fields of Theoretical Physics, and was dedicated to Prof. Véronique Hussin—an internationally recognized expert in many branches of Mathematical Physics who has been making remarkable contributions to this field since the 1980s. The reader will find interesting reviews on the main topics from internationally recognized experts in each field, as well as other original contributions, all of which deal with recent applications or discoveries in the aforementioned areas.
Book Synopsis Special Functions and Orthogonal Polynomials by : Richard Beals
Download or read book Special Functions and Orthogonal Polynomials written by Richard Beals and published by Cambridge University Press. This book was released on 2016-05-17 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are canonical and special. There is extended coverage of orthogonal polynomials, including connections to approximation theory, continued fractions, and the moment problem, as well as an introduction to new asymptotic methods. There are also chapters on Meijer G-functions and elliptic functions. The final chapter introduces Painlevé transcendents, which have been termed the 'special functions of the twenty-first century'.
Book Synopsis Mathematical Tools for Physicists by : Michael Grinfeld
Download or read book Mathematical Tools for Physicists written by Michael Grinfeld and published by John Wiley & Sons. This book was released on 2015-01-12 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition is significantly updated and expanded. This unique collection of review articles, ranging from fundamental concepts up to latest applications, contains individual contributions written by renowned experts in the relevant fields. Much attention is paid to ensuring fast access to the information, with each carefully reviewed article featuring cross-referencing, references to the most relevant publications in the field, and suggestions for further reading, both introductory as well as more specialized. While the chapters on group theory, integral transforms, Monte Carlo methods, numerical analysis, perturbation theory, and special functions are thoroughly rewritten, completely new content includes sections on commutative algebra, computational algebraic topology, differential geometry, dynamical systems, functional analysis, graph and network theory, PDEs of mathematical physics, probability theory, stochastic differential equations, and variational methods.
Book Synopsis Discrete Systems and Integrability by : J. Hietarinta
Download or read book Discrete Systems and Integrability written by J. Hietarinta and published by Cambridge University Press. This book was released on 2016-09 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: A first introduction to the theory of discrete integrable systems at a level suitable for students and non-experts.
Book Synopsis Geometric Methods in Physics XXXVIII by : Piotr Kielanowski
Download or read book Geometric Methods in Physics XXXVIII written by Piotr Kielanowski and published by Springer Nature. This book was released on 2020-10-27 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book consists of articles based on the XXXVIII Białowieża Workshop on Geometric Methods in Physics, 2019. The series of Białowieża workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, with applications to classical and quantum physics. For the past eight years, the Białowieża Workshops have been complemented by a School on Geometry and Physics, comprising series of advanced lectures for graduate students and early-career researchers. The extended abstracts of the five lecture series that were given in the eighth school are included. The unique character of the Workshop-and-School series draws on the venue, a famous historical, cultural and environmental site in the Białowieża forest, a UNESCO World Heritage Centre in the east of Poland: lectures are given in the Nature and Forest Museum and local traditions are interwoven with the scientific activities. The chapter “Toeplitz Extensions in Noncommutative Topology and Mathematical Physics” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Book Synopsis Mathematics Applied to Engineering, Modelling, and Social Issues by : Frank T. Smith
Download or read book Mathematics Applied to Engineering, Modelling, and Social Issues written by Frank T. Smith and published by Springer. This book was released on 2019-03-14 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents several aspects of research on mathematics that have significant applications in engineering, modelling and social matters, discussing a number of current and future social issues and problems in which mathematical tools can be beneficial. Each chapter enhances our understanding of the research problems in a particular an area of study and highlights the latest advances made in that area. The self-contained contributions make the results and problems discussed accessible to readers, and provides references to enable those interested to follow subsequent studies in still developing fields. Presenting real-world applications, the book is a valuable resource for graduate students, researchers and educators. It appeals to general readers curious about the practical applications of mathematics in diverse scientific areas and social problems.
Book Synopsis Waves and Stability in Continuous Media - Proceedings of the 15th Conference on Wascom 2009 by : Antonio Maria Greco
Download or read book Waves and Stability in Continuous Media - Proceedings of the 15th Conference on Wascom 2009 written by Antonio Maria Greco and published by World Scientific. This book was released on 2010 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains recent contributions in the field of waves propagation and stability in continuous media. The volume is the sixth in a series published by World Scientific since 1999.
Book Synopsis "WASCOM 2009" by : Antonio Maria Greco
Download or read book "WASCOM 2009" written by Antonio Maria Greco and published by World Scientific. This book was released on 2010 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains contributions in the field of waves propagation and stability in continuous media.
Book Synopsis NIST Handbook of Mathematical Functions Hardback and CD-ROM by : Frank W. J. Olver
Download or read book NIST Handbook of Mathematical Functions Hardback and CD-ROM written by Frank W. J. Olver and published by Cambridge University Press. This book was released on 2010-05-17 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.
Book Synopsis The Painlevé Property by : Robert Conte
Download or read book The Painlevé Property written by Robert Conte and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject this volume is explicit integration, that is, the analytical as opposed to the numerical solution, of all kinds of nonlinear differential equations (ordinary differential, partial differential, finite difference). Such equations describe many physical phenomena, their analytic solutions (particular solutions, first integral, and so forth) are in many cases preferable to numerical computation, which may be long, costly and, worst, subject to numerical errors. In addition, the analytic approach can provide a global knowledge of the solution, while the numerical approach is always local. Explicit integration is based on the powerful methods based on an in-depth study of singularities, that were first used by Poincar and subsequently developed by Painlev in his famous Leons de Stockholm of 1895. The recent interest in the subject and in the equations investigated by Painlev dates back about thirty years ago, arising from three, apparently disjoint, fields: the Ising model of statistical physics and field theory, propagation of solitons, and dynamical systems. The chapters in this volume, based on courses given at Cargse 1998, alternate mathematics and physics; they are intended to bring researchers entering the field to the level of present research.