The Implicit Function Theorem

Download The Implicit Function Theorem PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461200598
Total Pages : 168 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis The Implicit Function Theorem by : Steven G. Krantz

Download or read book The Implicit Function Theorem written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2012-11-26 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implicit function theorem is part of the bedrock of mathematical analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for C^k functions, (ii) formulations in other function spaces, (iii) formulations for non- smooth functions, (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash--Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present volume. The history of the implicit function theorem is a lively and complex story, and is intimately bound up with the development of fundamental ideas in analysis and geometry. This entire development, together with mathematical examples and proofs, is recounted for the first time here. It is an exciting tale, and it continues to evolve. "The Implicit Function Theorem" is an accessible and thorough treatment of implicit and inverse function theorems and their applications. It will be of interest to mathematicians, graduate/advanced undergraduate students, and to those who apply mathematics. The book unifies disparate ideas that have played an important role in modern mathematics. It serves to document and place in context a substantial body of mathematical ideas.

Implicit Functions and Solution Mappings

Download Implicit Functions and Solution Mappings PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 149391037X
Total Pages : 495 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Implicit Functions and Solution Mappings by : Asen L. Dontchev

Download or read book Implicit Functions and Solution Mappings written by Asen L. Dontchev and published by Springer. This book was released on 2014-06-18 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.

Pseudo-differential Operators and the Nash-Moser Theorem

Download Pseudo-differential Operators and the Nash-Moser Theorem PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821834541
Total Pages : 178 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Pseudo-differential Operators and the Nash-Moser Theorem by : Serge Alinhac

Download or read book Pseudo-differential Operators and the Nash-Moser Theorem written by Serge Alinhac and published by American Mathematical Soc.. This book was released on 2007 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents two essential and apparently unrelated subjects. The first, microlocal analysis and the theory of pseudo-differential operators, is a basic tool in the study of partial differential equations and in analysis on manifolds. The second, the Nash-Moser theorem, continues to be fundamentally important in geometry, dynamical systems and nonlinear PDE. Each of the subjects, which are of interest in their own right as well as for applications, can be learned separately. But the book shows the deep connections between the two themes, particularly in the middle part, which is devoted to Littlewood-Paley theory, dyadic analysis, and the paradifferential calculus and its application to interpolation inequalities. An important feature is the elementary and self-contained character of the text, to which many exercises and an introductory Chapter $0$ with basic material have been added. This makes the book readable by graduate students or researchers from one subject who are interested in becoming familiar with the other. It can also be used as a textbook for a graduate course on nonlinear PDE or geometry.

Fixed Point Theorems and Applications

Download Fixed Point Theorems and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030196704
Total Pages : 171 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Fixed Point Theorems and Applications by : Vittorino Pata

Download or read book Fixed Point Theorems and Applications written by Vittorino Pata and published by Springer Nature. This book was released on 2019-09-22 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses fixed point theory, a fascinating and far-reaching field with applications in several areas of mathematics. The content is divided into two main parts. The first, which is more theoretical, develops the main abstract theorems on the existence and uniqueness of fixed points of maps. In turn, the second part focuses on applications, covering a large variety of significant results ranging from ordinary differential equations in Banach spaces, to partial differential equations, operator theory, functional analysis, measure theory, and game theory. A final section containing 50 problems, many of which include helpful hints, rounds out the coverage. Intended for Master’s and PhD students in Mathematics or, more generally, mathematically oriented subjects, the book is designed to be largely self-contained, although some mathematical background is needed: readers should be familiar with measure theory, Banach and Hilbert spaces, locally convex topological vector spaces and, in general, with linear functional analysis.

Basic Analysis I

Download Basic Analysis I PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781718862401
Total Pages : 282 pages
Book Rating : 4.8/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Basic Analysis I by : Jiri Lebl

Download or read book Basic Analysis I written by Jiri Lebl and published by Createspace Independent Publishing Platform. This book was released on 2018-05-08 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Version 5.0. A first course in rigorous mathematical analysis. Covers the real number system, sequences and series, continuous functions, the derivative, the Riemann integral, sequences of functions, and metric spaces. Originally developed to teach Math 444 at University of Illinois at Urbana-Champaign and later enhanced for Math 521 at University of Wisconsin-Madison and Math 4143 at Oklahoma State University. The first volume is either a stand-alone one-semester course or the first semester of a year-long course together with the second volume. It can be used anywhere from a semester early introduction to analysis for undergraduates (especially chapters 1-5) to a year-long course for advanced undergraduates and masters-level students. See http://www.jirka.org/ra/ Table of Contents (of this volume I): Introduction 1. Real Numbers 2. Sequences and Series 3. Continuous Functions 4. The Derivative 5. The Riemann Integral 6. Sequences of Functions 7. Metric Spaces This first volume contains what used to be the entire book "Basic Analysis" before edition 5, that is chapters 1-7. Second volume contains chapters on multidimensional differential and integral calculus and further topics on approximation of functions.

Nonsmooth Equations in Optimization

Download Nonsmooth Equations in Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0306476169
Total Pages : 351 pages
Book Rating : 4.3/5 (64 download)

DOWNLOAD NOW!


Book Synopsis Nonsmooth Equations in Optimization by : Diethard Klatte

Download or read book Nonsmooth Equations in Optimization written by Diethard Klatte and published by Springer Science & Business Media. This book was released on 2005-12-17 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many questions dealing with solvability, stability and solution methods for va- ational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a - formulation of the initial model being under consideration. Due to the specific of the original problem, the resulting equation is usually either not differ- tiable (even if the data of the original model are smooth), or it does not satisfy the assumptions of the classical implicit function theorem. This phenomenon is the main reason why a considerable analytical inst- ment dealing with generalized equations (i.e., with finding zeros of multivalued mappings) and nonsmooth equations (i.e., the defining functions are not c- tinuously differentiable) has been developed during the last 20 years, and that under very different viewpoints and assumptions. In this theory, the classical hypotheses of convex analysis, in particular, monotonicity and convexity, have been weakened or dropped, and the scope of possible applications seems to be quite large. Briefly, this discipline is often called nonsmooth analysis, sometimes also variational analysis. Our book fits into this discipline, however, our main intention is to develop the analytical theory in close connection with the needs of applications in optimization and related subjects. Main Topics of the Book 1. Extended analysis of Lipschitz functions and their generalized derivatives, including ”Newton maps” and regularity of multivalued mappings. 2. Principle of successive approximation under metric regularity and its - plication to implicit functions.

Multivariable Analysis

Download Multivariable Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0857291920
Total Pages : 399 pages
Book Rating : 4.8/5 (572 download)

DOWNLOAD NOW!


Book Synopsis Multivariable Analysis by : Satish Shirali

Download or read book Multivariable Analysis written by Satish Shirali and published by Springer Science & Business Media. This book was released on 2010-12-13 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous treatment of multivariable differential and integral calculus. Implicit function theorem and the inverse function theorem based on total derivatives is explained along with the results and the connection to solving systems of equations. There is an extensive treatment of extrema, including constrained extrema and Lagrange multipliers, covering both first order necessary conditions and second order sufficient conditions. The material on Riemann integration in n dimensions, being delicate by its very nature, is discussed in detail. Differential forms and the general Stokes' Theorem are expounded in the last chapter. With a focus on clarity rather than brevity, this text gives clear motivation, definitions and examples with transparent proofs. Much of the material included is published for the first time in textbook form, for example Schwarz' Theorem in Chapter 2 and double sequences and sufficient conditions for constrained extrema in Chapter 4. A wide selection of problems, ranging from simple to more challenging, are included with carefully formed solutions. Ideal as a classroom text or a self study resource for students, this book will appeal to higher level undergraduates in Mathematics.

Topics in Nonlinear Functional Analysis

Download Topics in Nonlinear Functional Analysis PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821828193
Total Pages : 159 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Topics in Nonlinear Functional Analysis by : L. Nirenberg

Download or read book Topics in Nonlinear Functional Analysis written by L. Nirenberg and published by American Mathematical Soc.. This book was released on 2001 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its first appearance as a set of lecture notes published by the Courant Institute in 1974, this book served as an introduction to various subjects in nonlinear functional analysis. The current edition is a reprint of these notes, with added bibliographic references. Topological and analytic methods are developed for treating nonlinear ordinary and partial differential equations. The first two chapters of the book introduce the notion of topological degree and develop its basic properties. These properties are used in later chapters in the discussion of bifurcation theory (the possible branching of solutions as parameters vary), including the proof of Rabinowitz global bifurcation theorem. Stability of the branches is also studied. The book concludes with a presentation of some generalized implicit function theorems of Nash-Moser type with applications to Kolmogorov-Arnold-Moser theory and to conjugacy problems. For more than 20 years, this book continues to be an excellent graduate level textbook and a useful supplementary course text. Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University.

Advanced Calculus (Revised Edition)

Download Advanced Calculus (Revised Edition) PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9814583952
Total Pages : 595 pages
Book Rating : 4.8/5 (145 download)

DOWNLOAD NOW!


Book Synopsis Advanced Calculus (Revised Edition) by : Lynn Harold Loomis

Download or read book Advanced Calculus (Revised Edition) written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Calculus on Manifolds

Download Calculus on Manifolds PDF Online Free

Author :
Publisher : Westview Press
ISBN 13 : 9780805390216
Total Pages : 164 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Calculus on Manifolds by : Michael Spivak

Download or read book Calculus on Manifolds written by Michael Spivak and published by Westview Press. This book was released on 1965 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.

Functions of Several Variables

Download Functions of Several Variables PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468494619
Total Pages : 420 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Functions of Several Variables by : Wendell Fleming

Download or read book Functions of Several Variables written by Wendell Fleming and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics.

Several Real Variables

Download Several Real Variables PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319279564
Total Pages : 317 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Several Real Variables by : Shmuel Kantorovitz

Download or read book Several Real Variables written by Shmuel Kantorovitz and published by Springer. This book was released on 2016-02-09 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.

Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition

Download Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611975964
Total Pages : 446 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition by : Michel C. Delfour

Download or read book Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition written by Michel C. Delfour and published by SIAM. This book was released on 2019-12-19 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization. Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition builds upon its prior edition’s foundations in Hadamard semidifferential calculus, showcasing new material linked to convex analysis and nonsmooth optimization. It presents a modern treatment of optimization and Hadamard semidifferential calculus while remaining at a level that is accessible to undergraduate students, and challenges students with exercises related to problems in such fields as engineering, mechanics, medicine, physics, and economics. Answers are supplied in Appendix B. Students of mathematics, physics, engineering, economics, and other disciplines that demand a basic knowledge of mathematical analysis and linear algebra will find this a fitting primary or companion resource for their studies. This textbook has been designed and tested for a one-term course at the undergraduate level. In its full version, it is appropriate for a first-year graduate course and as a reference.

Real Mathematical Analysis

Download Real Mathematical Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387216847
Total Pages : 445 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Real Mathematical Analysis by : Charles Chapman Pugh

Download or read book Real Mathematical Analysis written by Charles Chapman Pugh and published by Springer Science & Business Media. This book was released on 2013-03-19 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.

Analysis for Applied Mathematics

Download Analysis for Applied Mathematics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475735596
Total Pages : 455 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Analysis for Applied Mathematics by : Ward Cheney

Download or read book Analysis for Applied Mathematics written by Ward Cheney and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This well-written book contains the analytical tools, concepts, and viewpoints needed for modern applied mathematics. It treats various practical methods for solving problems such as differential equations, boundary value problems, and integral equations. Pragmatic approaches to difficult equations are presented, including the Galerkin method, the method of iteration, Newton’s method, projection techniques, and homotopy methods.

Splitting Algorithms, Modern Operator Theory, and Applications

Download Splitting Algorithms, Modern Operator Theory, and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030259390
Total Pages : 500 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Splitting Algorithms, Modern Operator Theory, and Applications by : Heinz H. Bauschke

Download or read book Splitting Algorithms, Modern Operator Theory, and Applications written by Heinz H. Bauschke and published by Springer Nature. This book was released on 2019-11-06 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together research articles and state-of-the-art surveys in broad areas of optimization and numerical analysis with particular emphasis on algorithms. The discussion also focuses on advances in monotone operator theory and other topics from variational analysis and nonsmooth optimization, especially as they pertain to algorithms and concrete, implementable methods. The theory of monotone operators is a central framework for understanding and analyzing splitting algorithms. Topics discussed in the volume were presented at the interdisciplinary workshop titled Splitting Algorithms, Modern Operator Theory, and Applications held in Oaxaca, Mexico in September, 2017. Dedicated to Jonathan M. Borwein, one of the most versatile mathematicians in contemporary history, this compilation brings theory together with applications in novel and insightful ways.

Basic Analysis II

Download Basic Analysis II PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351679333
Total Pages : 530 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Basic Analysis II by : James K. Peterson

Download or read book Basic Analysis II written by James K. Peterson and published by CRC Press. This book was released on 2020-07-19 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic Analysis II: A Modern Calculus in Many Variables focuses on differentiation in Rn and important concepts about mappings from Rn to Rm, such as the inverse and implicit function theorem and change of variable formulae for multidimensional integration. These topics converge nicely with many other important applied and theoretical areas which are no longer covered in mathematical science curricula. Although it follows on from the preceding volume, this is a self-contained book, accessible to undergraduates with a minimal grounding in analysis. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduates in mathematics and associated disciplines Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions