Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Geometry Of Syzygies
Download The Geometry Of Syzygies full books in PDF, epub, and Kindle. Read online The Geometry Of Syzygies ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Geometry of Syzygies by : David Eisenbud
Download or read book The Geometry of Syzygies written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2006-10-28 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.
Book Synopsis Cohomology of Vector Bundles and Syzygies by : Jerzy Weyman
Download or read book Cohomology of Vector Bundles and Syzygies written by Jerzy Weyman and published by Cambridge University Press. This book was released on 2003-06-09 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central theme of this book is an exposition of the geometric technique of calculating syzygies. It is written from a point of view of commutative algebra, and without assuming any knowledge of representation theory the calculation of syzygies of determinantal varieties is explained. The starting point is a definition of Schur functors, and these are discussed from both an algebraic and geometric point of view. Then a chapter on various versions of Bott's Theorem leads on to a careful explanation of the technique itself, based on a description of the direct image of a Koszul complex. Applications to determinantal varieties follow, plus there are also chapters on applications of the technique to rank varieties for symmetric and skew symmetric tensors of arbitrary degree, closures of conjugacy classes of nilpotent matrices, discriminants and resultants. Numerous exercises are included to give the reader insight into how to apply this important method.
Book Synopsis Syzygies and Homotopy Theory by : F.E.A. Johnson
Download or read book Syzygies and Homotopy Theory written by F.E.A. Johnson and published by Springer Science & Business Media. This book was released on 2011-11-17 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most important invariant of a topological space is its fundamental group. When this is trivial, the resulting homotopy theory is well researched and familiar. In the general case, however, homotopy theory over nontrivial fundamental groups is much more problematic and far less well understood. Syzygies and Homotopy Theory explores the problem of nonsimply connected homotopy in the first nontrivial cases and presents, for the first time, a systematic rehabilitation of Hilbert's method of syzygies in the context of non-simply connected homotopy theory. The first part of the book is theoretical, formulated to allow a general finitely presented group as a fundamental group. The innovation here is to regard syzygies as stable modules rather than minimal modules. Inevitably this forces a reconsideration of the problems of noncancellation; these are confronted in the second, practical, part of the book. In particular, the second part of the book considers how the theory works out in detail for the specific examples Fn ́F where Fn is a free group of rank n and F is finite. Another innovation is to parametrize the first syzygy in terms of the more familiar class of stably free modules. Furthermore, detailed description of these stably free modules is effected by a suitable modification of the method of Milnor squares. The theory developed within this book has potential applications in various branches of algebra, including homological algebra, ring theory and K-theory. Syzygies and Homotopy Theory will be of interest to researchers and also to graduate students with a background in algebra and algebraic topology.
Book Synopsis The Geometry of Schemes by : David Eisenbud
Download or read book The Geometry of Schemes written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Book Synopsis Syzygies and Hilbert Functions by : Irena Peeva
Download or read book Syzygies and Hilbert Functions written by Irena Peeva and published by CRC Press. This book was released on 2007-03-20 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hilbert functions and resolutions are both central objects in commutative algebra and fruitful tools in the fields of algebraic geometry, combinatorics, commutative algebra, and computational algebra. Spurred by recent research in this area, Syzygies and Hilbert Functions explores fresh developments in the field as well as fundamental concepts.
Book Synopsis The Geometry of Syzygies by : David Eisenbud
Download or read book The Geometry of Syzygies written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2005 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.
Book Synopsis Frobenius Splitting Methods in Geometry and Representation Theory by : Michel Brion
Download or read book Frobenius Splitting Methods in Geometry and Representation Theory written by Michel Brion and published by Springer Science & Business Media. This book was released on 2007-08-08 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematically develops the theory of Frobenius splittings and covers all its major developments. Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings—definitions, properties and examples—to cutting edge research.
Book Synopsis Using Algebraic Geometry by : David A. Cox
Download or read book Using Algebraic Geometry written by David A. Cox and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.
Book Synopsis Combinatorial Aspects of Commutative Algebra and Algebraic Geometry by : Gunnar Fløystad
Download or read book Combinatorial Aspects of Commutative Algebra and Algebraic Geometry written by Gunnar Fløystad and published by Springer Science & Business Media. This book was released on 2011-05-16 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Abel Symposium 2009 "Combinatorial aspects of Commutative Algebra and Algebraic Geometry", held at Voss, Norway, featured talks by leading researchers in the field. This is the proceedings of the Symposium, presenting contributions on syzygies, tropical geometry, Boij-Söderberg theory, Schubert calculus, and quiver varieties. The volume also includes an introductory survey on binomial ideals with applications to hypergeometric series, combinatorial games and chemical reactions. The contributions pose interesting problems, and offer up-to-date research on some of the most active fields of commutative algebra and algebraic geometry with a combinatorial flavour.
Book Synopsis Discriminants, Resultants, and Multidimensional Determinants by : Israel M. Gelfand
Download or read book Discriminants, Resultants, and Multidimensional Determinants written by Israel M. Gelfand and published by Springer Science & Business Media. This book was released on 2009-05-21 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book revives and vastly expands the classical theory of resultants and discriminants. Most of the main new results of the book have been published earlier in more than a dozen joint papers of the authors. The book nicely complements these original papers with many examples illustrating both old and new results of the theory."—Mathematical Reviews
Book Synopsis 3264 and All That by : David Eisenbud
Download or read book 3264 and All That written by David Eisenbud and published by Cambridge University Press. This book was released on 2016-04-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: 3264, the mathematical solution to a question concerning geometric figures.
Download or read book Syzygies written by E. Graham Evans and published by Cambridge University Press. This book was released on 1985-08-15 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1985 book covers from first principles the theory of Syzygies.
Book Synopsis Koszul Cohomology and Algebraic Geometry by : Marian Aprodu
Download or read book Koszul Cohomology and Algebraic Geometry written by Marian Aprodu and published by American Mathematical Soc.. This book was released on 2010 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The systematic use of Koszul cohomology computations in algebraic geometry can be traced back to the foundational work of Mark Green in the 1980s. Green connected classical results concerning the ideal of a projective variety with vanishing theorems for Koszul cohomology. Green and Lazarsfeld also stated two conjectures that relate the Koszul cohomology of algebraic curves with the existence of special divisors on the curve. These conjectures became an important guideline for future research. In the intervening years, there has been a growing interaction between Koszul cohomology and algebraic geometry. Green and Voisin applied Koszul cohomology to a number of Hodge-theoretic problems, with remarkable success. More recently, Voisin achieved a breakthrough by proving Green's conjecture for general curves; soon afterwards, the Green-Lazarsfeld conjecture for general curves was proved as well. This book is primarily concerned with applications of Koszul cohomology to algebraic geometry, with an emphasis on syzygies of complex projective curves. The authors' main goal is to present Voisin's proof of the generic Green conjecture, and subsequent refinements. They discuss the geometric aspects of the theory and a number of concrete applications of Koszul cohomology to problems in algebraic geometry, including applications to Hodge theory and to the geometry of the moduli space of curves.
Book Synopsis Computations in Algebraic Geometry with Macaulay 2 by : David Eisenbud
Download or read book Computations in Algebraic Geometry with Macaulay 2 written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2001-09-25 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commutative algebra, and their applications. The algorithmic tools presented here are designed to serve readers wishing to bring such tools to bear on their own problems. The first part of the book covers Macaulay 2 using concrete applications; the second emphasizes details of the mathematics.
Book Synopsis Tensors: Geometry and Applications by : J. M. Landsberg
Download or read book Tensors: Geometry and Applications written by J. M. Landsberg and published by American Mathematical Soc.. This book was released on 2011-12-14 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.
Book Synopsis Trends in Commutative Algebra by : Luchezar L. Avramov
Download or read book Trends in Commutative Algebra written by Luchezar L. Avramov and published by Cambridge University Press. This book was released on 2004-12-13 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology, and combinatorics.
Book Synopsis A Royal Road to Algebraic Geometry by : Audun Holme
Download or read book A Royal Road to Algebraic Geometry written by Audun Holme and published by Springer Science & Business Media. This book was released on 2011-10-06 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about modern algebraic geometry. The title A Royal Road to Algebraic Geometry is inspired by the famous anecdote about the king asking Euclid if there really existed no simpler way for learning geometry, than to read all of his work Elements. Euclid is said to have answered: “There is no royal road to geometry!” The book starts by explaining this enigmatic answer, the aim of the book being to argue that indeed, in some sense there is a royal road to algebraic geometry. From a point of departure in algebraic curves, the exposition moves on to the present shape of the field, culminating with Alexander Grothendieck’s theory of schemes. Contemporary homological tools are explained. The reader will follow a directed path leading up to the main elements of modern algebraic geometry. When the road is completed, the reader is empowered to start navigating in this immense field, and to open up the door to a wonderful field of research. The greatest scientific experience of a lifetime!