The Geometric Theory of Ordinary Differential Equations and Algebraic Functions

Download The Geometric Theory of Ordinary Differential Equations and Algebraic Functions PDF Online Free

Author :
Publisher : Math Science Press
ISBN 13 : 9780915692385
Total Pages : 834 pages
Book Rating : 4.6/5 (923 download)

DOWNLOAD NOW!


Book Synopsis The Geometric Theory of Ordinary Differential Equations and Algebraic Functions by : Georges Valiron

Download or read book The Geometric Theory of Ordinary Differential Equations and Algebraic Functions written by Georges Valiron and published by Math Science Press. This book was released on 1984 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometrical Methods in the Theory of Ordinary Differential Equations

Download Geometrical Methods in the Theory of Ordinary Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461210372
Total Pages : 366 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Geometrical Methods in the Theory of Ordinary Differential Equations by : V.I. Arnold

Download or read book Geometrical Methods in the Theory of Ordinary Differential Equations written by V.I. Arnold and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.

Handbook of Differential Equations

Download Handbook of Differential Equations PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 9780127843964
Total Pages : 842 pages
Book Rating : 4.8/5 (439 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Differential Equations by : Daniel Zwillinger

Download or read book Handbook of Differential Equations written by Daniel Zwillinger and published by Gulf Professional Publishing. This book was released on 1998 with total page 842 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book compiles the most widely applicable methods for solving and approximating differential equations. as well as numerous examples showing the methods use. Topics include ordinary differential equations, symplectic integration of differential equations, and the use of wavelets when numerically solving differential equations. For nearly every technique, the book provides: The types of equations to which the method is applicable The idea behind the method The procedure for carrying out the method At least one simple example of the method Any cautions that should be exercised Notes for more advanced users References to the literature for more discussion or more examples, including pointers to electronic resources, such as URLs

Linear Differential Equations and Group Theory from Riemann to Poincare

Download Linear Differential Equations and Group Theory from Riemann to Poincare PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817647732
Total Pages : 357 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Linear Differential Equations and Group Theory from Riemann to Poincare by : Jeremy Gray

Download or read book Linear Differential Equations and Group Theory from Riemann to Poincare written by Jeremy Gray and published by Springer Science & Business Media. This book was released on 2010-01-07 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a study of how a particular vision of the unity of mathematics, often called geometric function theory, was created in the 19th century. The central focus is on the convergence of three mathematical topics: the hypergeometric and related linear differential equations, group theory, and on-Euclidean geometry. The text for this second edition has been greatly expanded and revised, and the existing appendices enriched. The exercises have been retained, making it possible to use the book as a companion to mathematics courses at the graduate level.

Theory of Ordinary Differential Equations

Download Theory of Ordinary Differential Equations PDF Online Free

Author :
Publisher : Krieger Publishing Company
ISBN 13 : 9780898747553
Total Pages : 429 pages
Book Rating : 4.7/5 (475 download)

DOWNLOAD NOW!


Book Synopsis Theory of Ordinary Differential Equations by : Earl A. Coddington

Download or read book Theory of Ordinary Differential Equations written by Earl A. Coddington and published by Krieger Publishing Company. This book was released on 1955 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prerequisite for the study of this book is a knowledge of matrices and the essentials of functions of a complex variable. It has been developed from courses given by the authors and probably contains more material than will ordinarily be covered in a one-year course. It is hoped that the book will be a useful text in the application of differential equations as well as for the pure mathematician.

Topics in the Geometric Theory of Linear Systems

Download Topics in the Geometric Theory of Linear Systems PDF Online Free

Author :
Publisher :
ISBN 13 : 9780915692354
Total Pages : 316 pages
Book Rating : 4.6/5 (923 download)

DOWNLOAD NOW!


Book Synopsis Topics in the Geometric Theory of Linear Systems by : Robert Hermann

Download or read book Topics in the Geometric Theory of Linear Systems written by Robert Hermann and published by . This book was released on 1984 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Ordinary Differential Equations

Download Ordinary Differential Equations PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486649407
Total Pages : 852 pages
Book Rating : 4.4/5 (866 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations by : Morris Tenenbaum

Download or read book Ordinary Differential Equations written by Morris Tenenbaum and published by Courier Corporation. This book was released on 1985-10-01 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

Galois Theory of Linear Differential Equations

Download Galois Theory of Linear Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642557503
Total Pages : 446 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Galois Theory of Linear Differential Equations by : Marius van der Put

Download or read book Galois Theory of Linear Differential Equations written by Marius van der Put and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews

The Monodromy Group

Download The Monodromy Group PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764375361
Total Pages : 589 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis The Monodromy Group by : Henryk Zoladek

Download or read book The Monodromy Group written by Henryk Zoladek and published by Springer Science & Business Media. This book was released on 2006-08-10 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: In singularity theory and algebraic geometry, the monodromy group is embodied in the Picard-Lefschetz formula and the Picard-Fuchs equations. It has applications in the weakened 16th Hilbert problem and in mixed Hodge structures. There is a deep connection of monodromy theory with Galois theory of differential equations and algebraic functions. In covering these and other topics, this book underlines the unifying role of the monogropy group.

Geometric Function Theory and Non-linear Analysis

Download Geometric Function Theory and Non-linear Analysis PDF Online Free

Author :
Publisher : Clarendon Press
ISBN 13 : 9780198509295
Total Pages : 576 pages
Book Rating : 4.5/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Geometric Function Theory and Non-linear Analysis by : Tadeusz Iwaniec

Download or read book Geometric Function Theory and Non-linear Analysis written by Tadeusz Iwaniec and published by Clarendon Press. This book was released on 2001 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iwaniec (math, Syracuse U.) and Martin (math, U. of Auckland) explain recent developments in the geometry of mappings, related to functions or deformations between subsets of the Euclidean n-space Rn and more generally between manifolds or other geometric objects. Material on mappings intersects with aspects of differential geometry, topology, partial differential equations, harmonic analysis, and the calculus of variations. Chapters cover topics such as conformal mappings, stability of the Mobius group, Sobolev theory and function spaces, the Liouville theorem, even dimensions, Picard and Montel theorems in space, uniformly quasiregular mappings, and quasiconformal groups. c. Book News Inc.

Geometry in Partial Differential Equations

Download Geometry in Partial Differential Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810214074
Total Pages : 482 pages
Book Rating : 4.2/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Geometry in Partial Differential Equations by : Agostino Prastaro

Download or read book Geometry in Partial Differential Equations written by Agostino Prastaro and published by World Scientific. This book was released on 1994 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.

Ordinary Differential Equations and Dynamical Systems

Download Ordinary Differential Equations and Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9462390215
Total Pages : 230 pages
Book Rating : 4.4/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Thomas C. Sideris

Download or read book Ordinary Differential Equations and Dynamical Systems written by Thomas C. Sideris and published by Springer Science & Business Media. This book was released on 2013-10-17 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a mathematically rigorous introduction to the beautiful subject of ordinary differential equations for beginning graduate or advanced undergraduate students. Students should have a solid background in analysis and linear algebra. The presentation emphasizes commonly used techniques without necessarily striving for completeness or for the treatment of a large number of topics. The first half of the book is devoted to the development of the basic theory: linear systems, existence and uniqueness of solutions to the initial value problem, flows, stability, and smooth dependence of solutions upon initial conditions and parameters. Much of this theory also serves as the paradigm for evolutionary partial differential equations. The second half of the book is devoted to geometric theory: topological conjugacy, invariant manifolds, existence and stability of periodic solutions, bifurcations, normal forms, and the existence of transverse homoclinic points and their link to chaotic dynamics. A common thread throughout the second part is the use of the implicit function theorem in Banach space. Chapter 5, devoted to this topic, the serves as the bridge between the two halves of the book.

Singular Differential Equations and Special Functions

Download Singular Differential Equations and Special Functions PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429641648
Total Pages : 359 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Singular Differential Equations and Special Functions by : Luis Manuel Braga da Costa Campos

Download or read book Singular Differential Equations and Special Functions written by Luis Manuel Braga da Costa Campos and published by CRC Press. This book was released on 2019-11-05 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular Differential Equations and Special Functions is the fifth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fifth book consists of one chapter (chapter 9 of the set). The chapter starts with general classes of differential equations and simultaneous systems for which the properties of the solutions can be established 'a priori', such as existence and unicity of solution, robustness and uniformity with regard to changes in boundary conditions and parameters, and stability and asymptotic behavior. The book proceeds to consider the most important class of linear differential equations with variable coefficients, that can be analytic functions or have regular or irregular singularities. The solution of singular differential equations by means of (i) power series; (ii) parametric integral transforms; and (iii) continued fractions lead to more than 20 special functions; among these is given greater attention to generalized circular, hyperbolic, Airy, Bessel and hypergeometric differential equations, and the special functions that specify their solutions. Includes existence, unicity, robustness, uniformity, and other theorems for non-linear differential equations Discusses properties of dynamical systems derived from the differential equations describing them, using methods such as Liapunov functions Includes linear differential equations with periodic coefficients, including Floquet theory, Hill infinite determinants and multiple parametric resonance Details theory of the generalized Bessel differential equation, and of the generalized, Gaussian, confluent and extended hypergeometric functions and relations with other 20 special functions Examines Linear Differential Equations with analytic coefficients or regular or irregular singularities, and solutions via power series, parametric integral transforms, and continued fractions

Lectures on Ordinary Differential Equations

Download Lectures on Ordinary Differential Equations PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486664201
Total Pages : 146 pages
Book Rating : 4.4/5 (866 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Ordinary Differential Equations by : Witold Hurewicz

Download or read book Lectures on Ordinary Differential Equations written by Witold Hurewicz and published by Courier Corporation. This book was released on 1990-01-01 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory treatment explores existence theorems for first-order scalar and vector equations, basic properties of linear vector equations, and two-dimensional nonlinear autonomous systems. "A rigorous and lively introduction." — The American Mathematical Monthly. 1958 edition.

Geometric Theory of Generalized Functions with Applications to General Relativity

Download Geometric Theory of Generalized Functions with Applications to General Relativity PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401598452
Total Pages : 517 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Geometric Theory of Generalized Functions with Applications to General Relativity by : M. Grosser

Download or read book Geometric Theory of Generalized Functions with Applications to General Relativity written by M. Grosser and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.

An Introduction to G-Functions. (AM-133), Volume 133

Download An Introduction to G-Functions. (AM-133), Volume 133 PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400882540
Total Pages : 349 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to G-Functions. (AM-133), Volume 133 by : Bernard Dwork

Download or read book An Introduction to G-Functions. (AM-133), Volume 133 written by Bernard Dwork and published by Princeton University Press. This book was released on 2016-03-02 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for advanced undergraduate and first-year graduate students, this book aims to introduce students to a serious level of p-adic analysis with important implications for number theory. The main object is the study of G-series, that is, power series y=aij=0 Ajxj with coefficients in an algebraic number field K. These series satisfy a linear differential equation Ly=0 with LIK(x) [d/dx] and have non-zero radii of convergence for each imbedding of K into the complex numbers. They have the further property that the common denominators of the first s coefficients go to infinity geometrically with the index s. After presenting a review of valuation theory and elementary p-adic analysis together with an application to the congruence zeta function, this book offers a detailed study of the p-adic properties of formal power series solutions of linear differential equations. In particular, the p-adic radii of convergence and the p-adic growth of coefficients are studied. Recent work of Christol, Bombieri, André, and Dwork is treated and augmented. The book concludes with Chudnovsky's theorem: the analytic continuation of a G -series is again a G -series. This book will be indispensable for those wishing to study the work of Bombieri and André on global relations and for the study of the arithmetic properties of solutions of ordinary differential equations.

Introduction to Non-linear Algebra

Download Introduction to Non-linear Algebra PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812708006
Total Pages : 286 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Non-linear Algebra by : Valeri? Valer?evich Dolotin

Download or read book Introduction to Non-linear Algebra written by Valeri? Valer?evich Dolotin and published by World Scientific. This book was released on 2007 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Literaturverz. S. 267 - 269