Large-Scale Inference

Download Large-Scale Inference PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139492136
Total Pages : pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Large-Scale Inference by : Bradley Efron

Download or read book Large-Scale Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2012-11-29 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.

An Empirical Bayes Approach to Statistics

Download An Empirical Bayes Approach to Statistics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 24 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis An Empirical Bayes Approach to Statistics by : Herbert Robbins

Download or read book An Empirical Bayes Approach to Statistics written by Herbert Robbins and published by . This book was released on 1955 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Empirical Bayes and Likelihood Inference

Download Empirical Bayes and Likelihood Inference PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387950181
Total Pages : 260 pages
Book Rating : 4.9/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Empirical Bayes and Likelihood Inference by : S.E. Ahmed

Download or read book Empirical Bayes and Likelihood Inference written by S.E. Ahmed and published by Springer Science & Business Media. This book was released on 2001 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian and such approaches to inference have a number of points of close contact, especially from an asymptotic point of view. Both emphasize the construction of interval estimates of unknown parameters. In this volume, researchers present recent work on several aspects of Bayesian, likelihood and empirical Bayes methods, presented at a workshop held in Montreal, Canada. The goal of the workshop was to explore the linkages among the methods, and to suggest new directions for research in the theory of inference.

Data Gathering, Analysis and Protection of Privacy Through Randomized Response Techniques: Qualitative and Quantitative Human Traits

Download Data Gathering, Analysis and Protection of Privacy Through Randomized Response Techniques: Qualitative and Quantitative Human Traits PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444635718
Total Pages : 545 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Data Gathering, Analysis and Protection of Privacy Through Randomized Response Techniques: Qualitative and Quantitative Human Traits by :

Download or read book Data Gathering, Analysis and Protection of Privacy Through Randomized Response Techniques: Qualitative and Quantitative Human Traits written by and published by Elsevier. This book was released on 2016-04-20 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Gathering, Analysis and Protection of Privacy through Randomized Response Techniques: Qualitative and Quantitative Human Traits tackles how to gather and analyze data relating to stigmatizing human traits. S.L. Warner invented RRT and published it in JASA, 1965. In the 50 years since, the subject has grown tremendously, with continued growth. This book comprehensively consolidates the literature to commemorate the inception of RR. - Brings together all relevant aspects of randomized response and indirect questioning - Tackles how to gather and analyze data relating to stigmatizing human traits - Gives an encyclopedic coverage of the topic - Covers recent developments and extrapolates to future trends

Bayesian Methods for Data Analysis, Third Edition

Download Bayesian Methods for Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781584886983
Total Pages : 552 pages
Book Rating : 4.8/5 (869 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Methods for Data Analysis, Third Edition by : Bradley P. Carlin

Download or read book Bayesian Methods for Data Analysis, Third Edition written by Bradley P. Carlin and published by CRC Press. This book was released on 2008-06-30 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Broadening its scope to nonstatisticians, Bayesian Methods for Data Analysis, Third Edition provides an accessible introduction to the foundations and applications of Bayesian analysis. Along with a complete reorganization of the material, this edition concentrates more on hierarchical Bayesian modeling as implemented via Markov chain Monte Carlo (MCMC) methods and related data analytic techniques. New to the Third Edition New data examples, corresponding R and WinBUGS code, and homework problems Explicit descriptions and illustrations of hierarchical modeling—now commonplace in Bayesian data analysis A new chapter on Bayesian design that emphasizes Bayesian clinical trials A completely revised and expanded section on ranking and histogram estimation A new case study on infectious disease modeling and the 1918 flu epidemic A solutions manual for qualifying instructors that contains solutions, computer code, and associated output for every homework problem—available both electronically and in print Ideal for Anyone Performing Statistical Analyses Focusing on applications from biostatistics, epidemiology, and medicine, this text builds on the popularity of its predecessors by making it suitable for even more practitioners and students.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Statistical Decision Theory and Bayesian Analysis

Download Statistical Decision Theory and Bayesian Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 147574286X
Total Pages : 633 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Statistical Decision Theory and Bayesian Analysis by : James O. Berger

Download or read book Statistical Decision Theory and Bayesian Analysis written by James O. Berger and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.

Bayesian Statistics

Download Bayesian Statistics PDF Online Free

Author :
Publisher : Wiley
ISBN 13 : 9780340814055
Total Pages : 352 pages
Book Rating : 4.8/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics by : Peter M. Lee

Download or read book Bayesian Statistics written by Peter M. Lee and published by Wiley. This book was released on 2009-01-20 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Statistics is the school of thought that uses all information surrounding the likelihood of an event rather than just that collected experimentally. Among statisticians the Bayesian approach continues to gain adherents and this new edition of Peter Lee’s well-established introduction maintains the clarity of exposition and use of examples for which this text is known and praised. In addition, there is extended coverage of the Metropolis-Hastings algorithm as well as an introduction to the use of BUGS (Bayesian Inference Using Gibbs Sampling) as this is now the standard computational tool for such numerical work. Other alterations include new material on generalized linear modelling and Bernardo’s theory of reference points.

The Analysis of Gene Expression Data

Download The Analysis of Gene Expression Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387216790
Total Pages : 511 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis The Analysis of Gene Expression Data by : Giovanni Parmigiani

Download or read book The Analysis of Gene Expression Data written by Giovanni Parmigiani and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents practical approaches for the analysis of data from gene expression micro-arrays. It describes the conceptual and methodological underpinning for a statistical tool and its implementation in software. The book includes coverage of various packages that are part of the Bioconductor project and several related R tools. The materials presented cover a range of software tools designed for varied audiences.

NBS Special Publication

Download NBS Special Publication PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 574 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis NBS Special Publication by :

Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Examples and Problems in Mathematical Statistics

Download Examples and Problems in Mathematical Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118605837
Total Pages : 499 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Examples and Problems in Mathematical Statistics by : Shelemyahu Zacks

Download or read book Examples and Problems in Mathematical Statistics written by Shelemyahu Zacks and published by John Wiley & Sons. This book was released on 2013-12-17 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.

Probability and Bayesian Modeling

Download Probability and Bayesian Modeling PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351030132
Total Pages : 553 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Probability and Bayesian Modeling by : Jim Albert

Download or read book Probability and Bayesian Modeling written by Jim Albert and published by CRC Press. This book was released on 2019-12-06 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.

Statistical Parametric Mapping: The Analysis of Functional Brain Images

Download Statistical Parametric Mapping: The Analysis of Functional Brain Images PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080466508
Total Pages : 689 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Statistical Parametric Mapping: The Analysis of Functional Brain Images by : William D. Penny

Download or read book Statistical Parametric Mapping: The Analysis of Functional Brain Images written by William D. Penny and published by Elsevier. This book was released on 2011-04-28 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. - An essential reference and companion for users of the SPM software - Provides a complete description of the concepts and procedures entailed by the analysis of brain images - Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data - Stands as a compendium of all the advances in neuroimaging data analysis over the past decade - Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes - Structured treatment of data analysis issues that links different modalities and models - Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible

Bayesian Theory

Download Bayesian Theory PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 047031771X
Total Pages : 608 pages
Book Rating : 4.4/5 (73 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Theory by : José M. Bernardo

Download or read book Bayesian Theory written by José M. Bernardo and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics

Think Bayes

Download Think Bayes PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491945443
Total Pages : 213 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Think Bayes by : Allen Downey

Download or read book Think Bayes written by Allen Downey and published by "O'Reilly Media, Inc.". This book was released on 2013-09-12 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you know how to program with Python, and know a little about probability, you're ready to tackle Bayesian statistics. This book shows you how to use Python code instead of math to help you learn Bayesian fundamentals. Once you get the math out of the way, you'll be able to apply these techniques to real-world problems.

A Comparison of the Bayesian and Frequentist Approaches to Estimation

Download A Comparison of the Bayesian and Frequentist Approaches to Estimation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441959416
Total Pages : 235 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis A Comparison of the Bayesian and Frequentist Approaches to Estimation by : Francisco J. Samaniego

Download or read book A Comparison of the Bayesian and Frequentist Approaches to Estimation written by Francisco J. Samaniego and published by Springer Science & Business Media. This book was released on 2010-06-14 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this monograph is “comparative statistical inference. ” While the topics covered have been carefully selected (they are, for example, restricted to pr- lems of statistical estimation), my aim is to provide ideas and examples which will assist a statistician, or a statistical practitioner, in comparing the performance one can expect from using either Bayesian or classical (aka, frequentist) solutions in - timation problems. Before investing the hours it will take to read this monograph, one might well want to know what sets it apart from other treatises on comparative inference. The two books that are closest to the present work are the well-known tomes by Barnett (1999) and Cox (2006). These books do indeed consider the c- ceptual and methodological differences between Bayesian and frequentist methods. What is largely absent from them, however, are answers to the question: “which - proach should one use in a given problem?” It is this latter issue that this monograph is intended to investigate. There are many books on Bayesian inference, including, for example, the widely used texts by Carlin and Louis (2008) and Gelman, Carlin, Stern and Rubin (2004). These books differ from the present work in that they begin with the premise that a Bayesian treatment is called for and then provide guidance on how a Bayesian an- ysis should be executed. Similarly, there are many books written from a classical perspective.

Bayesian Data Analysis, Second Edition

Download Bayesian Data Analysis, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420057294
Total Pages : 717 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Second Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Second Edition written by Andrew Gelman and published by CRC Press. This book was released on 2003-07-29 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating new and updated information, this second edition of THE bestselling text in Bayesian data analysis continues to emphasize practice over theory, describing how to conceptualize, perform, and critique statistical analyses from a Bayesian perspective. Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include: Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collection Bayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.