Discontinuous Galerkin Methods

Download Discontinuous Galerkin Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642597211
Total Pages : 468 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Discontinuous Galerkin Methods by : Bernardo Cockburn

Download or read book Discontinuous Galerkin Methods written by Bernardo Cockburn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Galerkin Finite Element Methods for Parabolic Problems

Download Galerkin Finite Element Methods for Parabolic Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662033593
Total Pages : 310 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Galerkin Finite Element Methods for Parabolic Problems by : Vidar Thomee

Download or read book Galerkin Finite Element Methods for Parabolic Problems written by Vidar Thomee and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Download Numerical Solution of Partial Differential Equations by the Finite Element Method PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486131599
Total Pages : 290 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Numerical Solution of Partial Differential Equations by the Finite Element Method by : Claes Johnson

Download or read book Numerical Solution of Partial Differential Equations by the Finite Element Method written by Claes Johnson and published by Courier Corporation. This book was released on 2012-05-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations

Download Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3319018183
Total Pages : 289 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations by : Xiaobing Feng

Download or read book Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations written by Xiaobing Feng and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of discontinuous Galerkin finite element methods has attracted considerable recent attention from scholars in the applied sciences and engineering. This volume brings together scholars working in this area, each representing a particular theme or direction of current research. Derived from the 2012 Barrett Lectures at the University of Tennessee, the papers reflect the state of the field today and point toward possibilities for future inquiry. The longer survey lectures, delivered by Franco Brezzi and Chi-Wang Shu, respectively, focus on theoretical aspects of discontinuous Galerkin methods for elliptic and evolution problems. Other papers apply DG methods to cases involving radiative transport equations, error estimates, and time-discrete higher order ALE functions, among other areas. Combining focused case studies with longer sections of expository discussion, this book will be an indispensable reference for researchers and students working with discontinuous Galerkin finite element methods and its applications.

The Finite Element Method: Theory, Implementation, and Applications

Download The Finite Element Method: Theory, Implementation, and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642332870
Total Pages : 403 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis The Finite Element Method: Theory, Implementation, and Applications by : Mats G. Larson

Download or read book The Finite Element Method: Theory, Implementation, and Applications written by Mats G. Larson and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Automated Solution of Differential Equations by the Finite Element Method

Download Automated Solution of Differential Equations by the Finite Element Method PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642230997
Total Pages : 723 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Automated Solution of Differential Equations by the Finite Element Method by : Anders Logg

Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

Nodal Discontinuous Galerkin Methods

Download Nodal Discontinuous Galerkin Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387720650
Total Pages : 507 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Nodal Discontinuous Galerkin Methods by : Jan S. Hesthaven

Download or read book Nodal Discontinuous Galerkin Methods written by Jan S. Hesthaven and published by Springer Science & Business Media. This book was released on 2007-12-18 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.

An Introduction to the Finite Element Method for Differential Equations

Download An Introduction to the Finite Element Method for Differential Equations PDF Online Free

Author :
Publisher : Wiley
ISBN 13 : 9781119671640
Total Pages : 0 pages
Book Rating : 4.6/5 (716 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Finite Element Method for Differential Equations by : Mohammad Asadzadeh

Download or read book An Introduction to the Finite Element Method for Differential Equations written by Mohammad Asadzadeh and published by Wiley. This book was released on 2020-09-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the finite element method with this masterful and practical volume An Introduction to the Finite Element Method (FEM) for Differential Equations provides readers with a practical and approachable examination of the use of the finite element method in mathematics. Author Mohammad Asadzadeh covers basic FEM theory, both in one-dimensional and higher dimensional cases. The book is filled with concrete strategies and useful methods to simplify its complex mathematical contents. Practically written and carefully detailed, An Introduction to the Finite Element Method covers topics including: An introduction to basic ordinary and partial differential equations The concept of fundamental solutions using Green's function approaches Polynomial approximations and interpolations, quadrature rules, and iterative numerical methods to solve linear systems of equations Higher-dimensional interpolation procedures Stability and convergence analysis of FEM for differential equations This book is ideal for upper-level undergraduate and graduate students in natural science and engineering. It belongs on the shelf of anyone seeking to improve their understanding of differential equations.

The Finite Element Method for Initial Value Problems

Download The Finite Element Method for Initial Value Problems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351269984
Total Pages : 694 pages
Book Rating : 4.3/5 (512 download)

DOWNLOAD NOW!


Book Synopsis The Finite Element Method for Initial Value Problems by : Karan S. Surana

Download or read book The Finite Element Method for Initial Value Problems written by Karan S. Surana and published by CRC Press. This book was released on 2017-10-17 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike most finite element books that cover time dependent processes (IVPs) in a cursory manner, The Finite Element Method for Initial Value Problems: Mathematics and Computations focuses on the mathematical details as well as applications of space-time coupled and space-time decoupled finite element methods for IVPs. Space-time operator classification, space-time methods of approximation, and space-time calculus of variations are used to establish unconditional stability of space-time methods during the evolution. Space-time decoupled methods are also presented with the same rigor. Stability of space-time decoupled methods, time integration of ODEs including the finite element method in time are presented in detail with applications. Modal basis, normal mode synthesis techniques, error estimation, and a posteriori error computations for space-time coupled as well as space-time decoupled methods are presented. This book is aimed at a second-semester graduate level course in FEM.

Perusal of the Finite Element Method

Download Perusal of the Finite Element Method PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535128191
Total Pages : 276 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Perusal of the Finite Element Method by : Radostina Petrova

Download or read book Perusal of the Finite Element Method written by Radostina Petrova and published by BoD – Books on Demand. This book was released on 2016-12-14 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element method (FEM) is a numerical technique for finding approximate solutions to different numerical problems. The practical applications of FEM are known as finite element analysis (FEA). FEA is a good choice for analyzing problems over complicated domains. The first three chapters of this book contribute to the development of new FE techniques by examining a few key hurdles of the FEM and proposing techniques to mitigate them. The next four chapters focus on the close connection between the development of a new technique and its implementation. Current state-of-the-art software packages for FEA allow the construction, refinement, and optimization of entire designs before manufacturing. This is convincingly demonstrated in the last three chapters of the book with examples from the field of biomechanical engineering. This book presents a current research by highlighting the vitality and potential of the finite elements for the future development of more efficient numerical techniques, new areas of application, and FEA's important role in practical engineering.

hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes

Download hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319676733
Total Pages : 133 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes by : Andrea Cangiani

Download or read book hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes written by Andrea Cangiani and published by Springer. This book was released on 2017-11-27 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios.

Runge-Kutta Discontinuous Galerkin Methods for Convection-dominated Problems

Download Runge-Kutta Discontinuous Galerkin Methods for Convection-dominated Problems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 84 pages
Book Rating : 4.:/5 (317 download)

DOWNLOAD NOW!


Book Synopsis Runge-Kutta Discontinuous Galerkin Methods for Convection-dominated Problems by : Bernardo Cockburn

Download or read book Runge-Kutta Discontinuous Galerkin Methods for Convection-dominated Problems written by Bernardo Cockburn and published by . This book was released on 2000 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Godunov Methods

Download Godunov Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461506638
Total Pages : 1050 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Godunov Methods by : E.F. Toro

Download or read book Godunov Methods written by E.F. Toro and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1050 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited review book on Godunov methods contains 97 articles, all of which were presented at the international conference on Godunov Methods: Theory and Applications, held at Oxford in October 1999, to commemo rate the 70th birthday of the Russian mathematician Sergei K. Godunov. The meeting enjoyed the participation of 140 scientists from 20 countries; one of the participants commented: everyone is here, meaning that virtu ally everybody who had made a significant contribution to the general area of numerical methods for hyperbolic conservation laws, along the lines first proposed by Godunov in the fifties, was present at the meeting. Sadly, there were important absentees, who due to personal circumstance could not at tend this very exciting gathering. The central theme o{ the meeting, and of this book, was numerical methods for hyperbolic conservation laws fol lowing Godunov's key ideas contained in his celebrated paper of 1959. But Godunov's contributions to science are not restricted to Godunov's method.

Galerkin Finite Element Methods for Parabolic Problems

Download Galerkin Finite Element Methods for Parabolic Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540632368
Total Pages : 320 pages
Book Rating : 4.6/5 (323 download)

DOWNLOAD NOW!


Book Synopsis Galerkin Finite Element Methods for Parabolic Problems by : Vidar Thomée

Download or read book Galerkin Finite Element Methods for Parabolic Problems written by Vidar Thomée and published by Springer Science & Business Media. This book was released on 2010 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Ordinary Differential Equations and Integral Equations

Download Ordinary Differential Equations and Integral Equations PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 9780444506009
Total Pages : 562 pages
Book Rating : 4.5/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations and Integral Equations by : C.T.H. Baker

Download or read book Ordinary Differential Equations and Integral Equations written by C.T.H. Baker and published by Gulf Professional Publishing. This book was released on 2001-07-04 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods). John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?" Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices. The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour. Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems. Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions. Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions. Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods. Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory. Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages. Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields. Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems. Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems. Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems. Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions. The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect. Many phenomena incorporate noise, and the numerical solution of stochastic differential equations has developed as a relatively new item of study in the area. Keven Burrage, Pamela Burrage and Taketomo Mitsui review the way numerical methods for solving stochastic differential equations (SDE's) are constructed. One of the more recent areas to attract scrutiny has been the area of differential equations with after-effect (retarded, delay, or neutral delay differential equations) and in this volume we include a number of papers on evolutionary problems in this area. The paper of Genna Bocharov and Fathalla Rihan conveys the importance in mathematical biology of models using retarded differential equations. The contribution by Christopher Baker is intended to convey much of the background necessary for the application of numerical methods and includes some original results on stability and on the solution of approximating equations. Alfredo Bellen, Nicola Guglielmi and Marino Zennaro contribute to the analysis of stability of numerical solutions of nonlinear neutral differential equations. Koen Engelborghs, Tatyana Luzyanina, Dirk Roose, Neville Ford and Volker Wulf consider the numerics of bifurcation in delay differential equations. Evelyn Buckwar contributes a paper indicating the construction and analysis of a numerical strategy for stochastic delay differential equations (SDDEs). This volume contains contributions on both Volterra and Fredholm-type integral equations. Christopher Baker responded to a late challenge to craft a review of the theory of the basic numerics of Volterra integral and integro-differential equations. Simon Shaw and John Whiteman discuss Galerkin methods for a type of Volterra integral equation that arises in modelling viscoelasticity. A subclass of boundary-value problems for ordinary differential equation comprises eigenvalue problems such as Sturm-Liouville problems (SLP) and Schrödinger equations. Liviu Ixaru describes the advances made over the last three decades in the field of piecewise perturbation methods for the numerical solution of Sturm-Liouville problems in general and systems of Schrödinger equations in particular. Alan Andrew surveys the asymptotic correction method for regular Sturm-Liouville problems. Leon Greenberg and Marco Marletta survey methods for higher-order Sturm-Liouville problems. R. Moore in the 1960s first showed the feasibility of validated solutions of differential equations, that is, of computing guaranteed enclosures of solutions. Boundary integral equations. Numerical solution of integral equations associated with boundary-value problems has experienced continuing interest. Peter Junghanns and Bernd Silbermann present a selection of modern results concerning the numerical analysis of one-dimensional Cauchy singular integral equations, in particular the stability of operator sequences associated with different projection methods. Johannes Elschner and Ivan Graham summarize the most important results achieved in the last years about the numerical solution of one-dimensional integral equations of Mellin type of means of projection methods and, in particular, by collocation methods. A survey of results on quadrature methods for solving boundary integral equations is presented by Andreas Rathsfeld. Wolfgang Hackbusch and Boris Khoromski present a novel approach for a very efficient treatment of integral operators. Ernst Stephan examines multilevel methods for the h-, p- and hp- versions of the boundary element method, including pre-conditioning techniques. George Hsiao, Olaf Steinbach and Wolfgang Wendland analyze various boundary element methods employed in local discretization schemes.

High-Order Methods for Computational Physics

Download High-Order Methods for Computational Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 366203882X
Total Pages : 594 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis High-Order Methods for Computational Physics by : Timothy J. Barth

Download or read book High-Order Methods for Computational Physics written by Timothy J. Barth and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.

Least-Squares Finite Element Methods

Download Least-Squares Finite Element Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387689222
Total Pages : 669 pages
Book Rating : 4.3/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Least-Squares Finite Element Methods by : Pavel B. Bochev

Download or read book Least-Squares Finite Element Methods written by Pavel B. Bochev and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.