Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Differential Method
Download The Differential Method full books in PDF, epub, and Kindle. Read online The Differential Method ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Book Synopsis Differential Quadrature and Its Application in Engineering by : Chang Shu
Download or read book Differential Quadrature and Its Application in Engineering written by Chang Shu and published by Springer Science & Business Media. This book was released on 2000-01-14 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.
Book Synopsis Similarity Methods for Differential Equations by : G.W. Bluman
Download or read book Similarity Methods for Differential Equations written by G.W. Bluman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide a systematic and practical account of methods of integration of ordinary and partial differential equations based on invariance under continuous (Lie) groups of trans formations. The goal of these methods is the expression of a solution in terms of quadrature in the case of ordinary differential equations of first order and a reduction in order for higher order equations. For partial differential equations at least a reduction in the number of independent variables is sought and in favorable cases a reduction to ordinary differential equations with special solutions or quadrature. In the last century, approximately one hundred years ago, Sophus Lie tried to construct a general integration theory, in the above sense, for ordinary differential equations. Following Abel's approach for algebraic equations he studied the invariance of ordinary differential equations under transformations. In particular, Lie introduced the study of continuous groups of transformations of ordinary differential equations, based on the infinitesimal properties of the group. In a sense the theory was completely successful. It was shown how for a first-order differential equation the knowledge of a group leads immediately to quadrature, and for a higher order equation (or system) to a reduction in order. In another sense this theory is somewhat disappointing in that for a first-order differ ential equation essentially no systematic way can be given for finding the groups or showing that they do not exist for a first-order differential equation.
Book Synopsis Differential Transformation Method for Mechanical Engineering Problems by : Mohammad Hatami
Download or read book Differential Transformation Method for Mechanical Engineering Problems written by Mohammad Hatami and published by Academic Press. This book was released on 2016-11-17 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Transformation Method for Mechanical Engineering Problems focuses on applying DTM to a range of mechanical engineering applications. The authors modify traditional DTM to produce two additional methods, multi-step differential transformation method (Ms-DTM) and the hybrid differential transformation method and finite difference method (Hybrid DTM-FDM). It is then demonstrated how these can be a suitable series solution for engineering and physical problems, such as the motion of a spherical particle, nanofluid flow and heat transfer, and micropolar fluid flow and heat transfer. - Presents the differential transformation method and why it holds an advantage over higher-order Taylor series methods - Includes a full mathematical introduction to DTM, Ms-DTM, and Hybrid DTM - Covers the use of these methods for solving a range of problems in areas such as nanofluid flow, heat transfer, and motion of a spherical particle in different conditions - Provides numerous examples and exercises which will help the reader fully grasp the practical applications of these new methods
Book Synopsis Differential Equations and Group Methods for Scientists and Engineers by : James M. Hill
Download or read book Differential Equations and Group Methods for Scientists and Engineers written by James M. Hill and published by CRC Press. This book was released on 1992-03-17 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations and Group Methods for Scientists and Engineers presents a basic introduction to the technically complex area of invariant one-parameter Lie group methods and their use in solving differential equations. The book features discussions on ordinary differential equations (first, second, and higher order) in addition to partial differential equations (linear and nonlinear). Each chapter contains worked examples with several problems at the end; answers to these problems and hints on how to solve them are found at the back of the book. Students and professionals in mathematics, science, and engineering will find this book indispensable for developing a fundamental understanding of how to use invariant one-parameter group methods to solve differential equations.
Book Synopsis Mastering Differential Equations by : Teaching Company
Download or read book Mastering Differential Equations written by Teaching Company and published by . This book was released on 2011 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this course, Boston University Professor Robert L. Devaney presents an introduction to differential equations.
Book Synopsis Reduced Basis Methods for Partial Differential Equations by : Alfio Quarteroni
Download or read book Reduced Basis Methods for Partial Differential Equations written by Alfio Quarteroni and published by Springer. This book was released on 2015-08-19 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit
Book Synopsis Automated Solution of Differential Equations by the Finite Element Method by : Anders Logg
Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Book Synopsis Adaptive Finite Element Methods for Differential Equations by : Wolfgang Bangerth
Download or read book Adaptive Finite Element Methods for Differential Equations written by Wolfgang Bangerth and published by Birkhäuser. This book was released on 2013-11-11 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: These Lecture Notes have been compiled from the material presented by the second author in a lecture series ('Nachdiplomvorlesung') at the Department of Mathematics of the ETH Zurich during the summer term 2002. Concepts of 'self adaptivity' in the numerical solution of differential equations are discussed with emphasis on Galerkin finite element methods. The key issues are a posteriori er ror estimation and automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method (or shortly D WR method) for goal-oriented error estimation is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. 'Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. The basics of the DWR method and various of its applications are described in the following survey articles: R. Rannacher [114], Error control in finite element computations. In: Proc. of Summer School Error Control and Adaptivity in Scientific Computing (H. Bulgak and C. Zenger, eds), pp. 247-278. Kluwer Academic Publishers, 1998. M. Braack and R. Rannacher [42], Adaptive finite element methods for low Mach-number flows with chemical reactions.
Book Synopsis The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods by : Ernst Hairer
Download or read book The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods written by Ernst Hairer and published by Springer. This book was released on 2006-11-14 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.
Book Synopsis Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations by : Uri M. Ascher
Download or read book Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations written by Uri M. Ascher and published by SIAM. This book was released on 1998-08-01 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains all the material necessary for a course on the numerical solution of differential equations.
Book Synopsis Difference Equations by Differential Equation Methods by : Peter E. Hydon
Download or read book Difference Equations by Differential Equation Methods written by Peter E. Hydon and published by Cambridge University Press. This book was released on 2014-08-07 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Straightforward introduction for non-specialists and experts alike. Explains how to derive solutions, first integrals and conservation laws of difference equations.
Book Synopsis Differential Quadrature and Differential Quadrature Based Element Methods by : Xinwei Wang
Download or read book Differential Quadrature and Differential Quadrature Based Element Methods written by Xinwei Wang and published by Butterworth-Heinemann. This book was released on 2015-03-24 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications is a comprehensive guide to these methods and their various applications in recent years. Due to the attractive features of rapid convergence, high accuracy, and computational efficiency, the differential quadrature method and its based element methods are increasingly being used to study problems in the area of structural mechanics, such as static, buckling and vibration problems of composite structures and functional material structures. This book covers new developments and their applications in detail, with accompanying FORTRAN and MATLAB programs to help you overcome difficult programming challenges. It summarises the variety of different quadrature formulations that can be found by varying the degree of polynomials, the treatment of boundary conditions and employing regular or irregular grid points, to help you choose the correct method for solving practical problems. - Offers a clear explanation of both the theory and many applications of DQM to structural analyses - Discusses and illustrates reliable ways to apply multiple boundary conditions and develop reliable grid distributions - Supported by FORTRAN and MATLAB programs, including subroutines to compute grid distributions and weighting coefficients
Book Synopsis Numerical Methods for Differential Equations by : J.R. Dormand
Download or read book Numerical Methods for Differential Equations written by J.R. Dormand and published by CRC Press. This book was released on 1996-02-21 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.
Book Synopsis Entropy Methods for Diffusive Partial Differential Equations by : Ansgar Jüngel
Download or read book Entropy Methods for Diffusive Partial Differential Equations written by Ansgar Jüngel and published by Springer. This book was released on 2016-06-17 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.
Book Synopsis Numerical Solution of Partial Differential Equations by the Finite Element Method by : Claes Johnson
Download or read book Numerical Solution of Partial Differential Equations by the Finite Element Method written by Claes Johnson and published by Courier Corporation. This book was released on 2012-05-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Book Synopsis Partial Differential Equations with Numerical Methods by : Stig Larsson
Download or read book Partial Differential Equations with Numerical Methods written by Stig Larsson and published by Springer Science & Business Media. This book was released on 2008-12-05 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.