Translations of Mathematical Monographs

Download Translations of Mathematical Monographs PDF Online Free

Author :
Publisher :
ISBN 13 : 9780821809587
Total Pages : 333 pages
Book Rating : 4.8/5 (95 download)

DOWNLOAD NOW!


Book Synopsis Translations of Mathematical Monographs by :

Download or read book Translations of Mathematical Monographs written by and published by . This book was released on 1962 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Applications of Symmetry Methods to Partial Differential Equations

Download Applications of Symmetry Methods to Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387680284
Total Pages : 415 pages
Book Rating : 4.3/5 (876 download)

DOWNLOAD NOW!


Book Synopsis Applications of Symmetry Methods to Partial Differential Equations by : George W. Bluman

Download or read book Applications of Symmetry Methods to Partial Differential Equations written by George W. Bluman and published by Springer Science & Business Media. This book was released on 2009-10-30 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an acessible book on the advanced symmetry methods for differential equations, including such subjects as conservation laws, Lie-Bäcklund symmetries, contact transformations, adjoint symmetries, Nöther's Theorem, mappings with some modification, potential symmetries, nonlocal symmetries, nonlocal mappings, and non-classical method. Of use to graduate students and researchers in mathematics and physics.

Applications of Lie Groups to Differential Equations

Download Applications of Lie Groups to Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468402749
Total Pages : 524 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Applications of Lie Groups to Differential Equations by : Peter J. Olver

Download or read book Applications of Lie Groups to Differential Equations written by Peter J. Olver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Group Analysis of Differential Equations

Download Group Analysis of Differential Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483219062
Total Pages : 433 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Group Analysis of Differential Equations by : L. V. Ovsiannikov

Download or read book Group Analysis of Differential Equations written by L. V. Ovsiannikov and published by Academic Press. This book was released on 2014-05-10 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group Analysis of Differential Equations provides a systematic exposition of the theory of Lie groups and Lie algebras and its application to creating algorithms for solving the problems of the group analysis of differential equations. This text is organized into eight chapters. Chapters I to III describe the one-parameter group with its tangential field of vectors. The nonstandard treatment of the Banach Lie groups is reviewed in Chapter IV, including a discussion of the complete theory of Lie group transformations. Chapters V and VI cover the construction of partial solution classes for the given differential equation with a known admitted group. The theory of differential invariants that is developed on an infinitesimal basis is elaborated in Chapter VII. The last chapter outlines the ways in which the methods of group analysis are used in special issues involving differential equations. This publication is a good source for students and specialists concerned with areas in which ordinary and partial differential equations play an important role.

Symmetry Analysis of Differential Equations with Mathematica®

Download Symmetry Analysis of Differential Equations with Mathematica® PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461221102
Total Pages : 532 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Symmetry Analysis of Differential Equations with Mathematica® by : Gerd Baumann

Download or read book Symmetry Analysis of Differential Equations with Mathematica® written by Gerd Baumann and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary "MathLie" software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.

Symmetries of Partial Differential Equations

Download Symmetries of Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400919484
Total Pages : 454 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Symmetries of Partial Differential Equations by : A.M. Vinogradov

Download or read book Symmetries of Partial Differential Equations written by A.M. Vinogradov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2 The authors of these issues involve not only mathematicians, but also speci alists in (mathematical) physics and computer sciences. So here the reader will find different points of view and approaches to the considered field. A. M. VINOGRADOV 3 Acta Applicandae Mathematicae 15: 3-21, 1989. © 1989 Kluwer Academic Publishers. Symmetries and Conservation Laws of Partial Differential Equations: Basic Notions and Results A. M. VINOORADOV Department of Mathematics, Moscow State University, 117234, Moscow, U. S. S. R. (Received: 22 August 1988) Abstract. The main notions and results which are necessary for finding higher symmetries and conservation laws for general systems of partial differential equations are given. These constitute the starting point for the subsequent papers of this volume. Some problems are also discussed. AMS subject classifications (1980). 35A30, 58005, 58035, 58H05. Key words. Higher symmetries, conservation laws, partial differential equations, infinitely prolonged equations, generating functions. o. Introduction In this paper we present the basic notions and results from the general theory of local symmetries and conservation laws of partial differential equations. More exactly, we will focus our attention on the main conceptual points as well as on the problem of how to find all higher symmetries and conservation laws for a given system of partial differential equations. Also, some general views and perspectives will be discussed.

Symmetries, Differential Equations and Applications

Download Symmetries, Differential Equations and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030013766
Total Pages : 204 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Symmetries, Differential Equations and Applications by : Victor G. Kac

Download or read book Symmetries, Differential Equations and Applications written by Victor G. Kac and published by Springer. This book was released on 2018-11-04 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the third International Conference on Symmetries, Differential Equations and Applications (SDEA-III), this proceedings volume highlights recent important advances and trends in the applications of Lie groups, including a broad area of topics in interdisciplinary studies, ranging from mathematical physics to financial mathematics. The selected and peer-reviewed contributions gathered here cover Lie theory and symmetry methods in differential equations, Lie algebras and Lie pseudogroups, super-symmetry and super-integrability, representation theory of Lie algebras, classification problems, conservation laws, and geometrical methods. The SDEA III, held in honour of the Centenary of Noether’s Theorem, proven by the prominent German mathematician Emmy Noether, at Istanbul Technical University in August 2017 provided a productive forum for academic researchers, both junior and senior, and students to discuss and share the latest developments in the theory and applications of Lie symmetry groups. This work has an interdisciplinary appeal and will be a valuable read for researchers in mathematics, mechanics, physics, engineering, medicine and finance.

Lie Symmetry Analysis of Fractional Differential Equations

Download Lie Symmetry Analysis of Fractional Differential Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000068935
Total Pages : 223 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis Lie Symmetry Analysis of Fractional Differential Equations by : Mir Sajjad Hashemi

Download or read book Lie Symmetry Analysis of Fractional Differential Equations written by Mir Sajjad Hashemi and published by CRC Press. This book was released on 2020-07-09 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: The trajectory of fractional calculus has undergone several periods of intensive development, both in pure and applied sciences. During the last few decades fractional calculus has also been associated with the power law effects and its various applications. It is a natural to ask if fractional calculus, as a nonlocal calculus, can produce new results within the well-established field of Lie symmetries and their applications. In Lie Symmetry Analysis of Fractional Differential Equations the authors try to answer this vital question by analyzing different aspects of fractional Lie symmetries and related conservation laws. Finding the exact solutions of a given fractional partial differential equation is not an easy task, but is one that the authors seek to grapple with here. The book also includes generalization of Lie symmetries for fractional integro differential equations. Features Provides a solid basis for understanding fractional calculus, before going on to explore in detail Lie Symmetries and their applications Useful for PhD and postdoc graduates, as well as for all mathematicians and applied researchers who use the powerful concept of Lie symmetries Filled with various examples to aid understanding of the topics

CRC Handbook of Lie Group Analysis of Differential Equations

Download CRC Handbook of Lie Group Analysis of Differential Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780849394195
Total Pages : 572 pages
Book Rating : 4.3/5 (941 download)

DOWNLOAD NOW!


Book Synopsis CRC Handbook of Lie Group Analysis of Differential Equations by : Nail H. Ibragimov

Download or read book CRC Handbook of Lie Group Analysis of Differential Equations written by Nail H. Ibragimov and published by CRC Press. This book was released on 1995-10-24 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.

The Noether Theorems

Download The Noether Theorems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387878688
Total Pages : 211 pages
Book Rating : 4.3/5 (878 download)

DOWNLOAD NOW!


Book Synopsis The Noether Theorems by : Yvette Kosmann-Schwarzbach

Download or read book The Noether Theorems written by Yvette Kosmann-Schwarzbach and published by Springer Science & Business Media. This book was released on 2010-11-17 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1915 and 1916 Emmy Noether was asked by Felix Klein and David Hilbert to assist them in understanding issues involved in any attempt to formulate a general theory of relativity, in particular the new ideas of Einstein. She was consulted particularly over the difficult issue of the form a law of conservation of energy could take in the new theory, and she succeeded brilliantly, finding two deep theorems. But between 1916 and 1950, the theorem was poorly understood and Noether's name disappeared almost entirely. People like Klein and Einstein did little more then mention her name in the various popular or historical accounts they wrote. Worse, earlier attempts which had been eclipsed by Noether's achievements were remembered, and sometimes figure in quick historical accounts of the time. This book carries a translation of Noether's original paper into English, and then describes the strange history of its reception and the responses to her work. Ultimately the theorems became decisive in a shift from basing fundamental physics on conservations laws to basing it on symmetries, or at the very least, in thoroughly explaining the connection between these two families of ideas. The real significance of this book is that it shows very clearly how long it took before mathematicians and physicists began to recognize the seminal importance of Noether's results. This book is thoroughly researched and provides careful documentation of the textbook literature. Kosmann-Schwarzbach has thus thrown considerable light on this slow dance in which the mathematical tools necessary to study symmetry properties and conservation laws were apparently provided long before the orchestra arrives and the party begins.

Symmetries and Applications of Differential Equations

Download Symmetries and Applications of Differential Equations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981164683X
Total Pages : 287 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Symmetries and Applications of Differential Equations by : Albert C. J. Luo

Download or read book Symmetries and Applications of Differential Equations written by Albert C. J. Luo and published by Springer Nature. This book was released on 2021-12-14 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classification, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (1939–2018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering.

Symmetries and Differential Equations

Download Symmetries and Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475743076
Total Pages : 424 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Symmetries and Differential Equations by : George W. Bluman

Download or read book Symmetries and Differential Equations written by George W. Bluman and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: A major portion of this book discusses work which has appeared since the publication of the book Similarity Methods for Differential Equations, Springer-Verlag, 1974, by the first author and J.D. Cole. The present book also includes a thorough and comprehensive treatment of Lie groups of tranformations and their various uses for solving ordinary and partial differential equations. No knowledge of group theory is assumed. Emphasis is placed on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This book should be particularly suitable for physicists, applied mathematicians, and engineers. Almost all of the examples are taken from physical and engineering problems including those concerned with heat conduction, wave propagation, and fluid flows. A preliminary version was used as lecture notes for a two-semester course taught by the first author at the University of British Columbia in 1987-88 to graduate and senior undergraduate students in applied mathematics and physics. Chapters 1 to 4 encompass basic material. More specialized topics are covered in Chapters 5 to 7.

Emmy Noether's Wonderful Theorem

Download Emmy Noether's Wonderful Theorem PDF Online Free

Author :
Publisher : JHU Press
ISBN 13 : 1421422689
Total Pages : 338 pages
Book Rating : 4.4/5 (214 download)

DOWNLOAD NOW!


Book Synopsis Emmy Noether's Wonderful Theorem by : Dwight E. Neuenschwander

Download or read book Emmy Noether's Wonderful Theorem written by Dwight E. Neuenschwander and published by JHU Press. This book was released on 2017-04-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most important—and beautiful—mathematical solutions ever devised, Noether’s theorem touches on every aspect of physics. "In the judgment of the most competent living mathematicians, Fräulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began."—Albert Einstein The year was 1915, and the young mathematician Emmy Noether had just settled into Göttingen University when Albert Einstein visited to lecture on his nearly finished general theory of relativity. Two leading mathematicians of the day, David Hilbert and Felix Klein, dug into the new theory with gusto, but had difficulty reconciling it with what was known about the conservation of energy. Knowing of her expertise in invariance theory, they requested Noether’s help. To solve the problem, she developed a novel theorem, applicable across all of physics, which relates conservation laws to continuous symmetries—one of the most important pieces of mathematical reasoning ever developed. Noether’s “first” and “second” theorem was published in 1918. The first theorem relates symmetries under global spacetime transformations to the conservation of energy and momentum, and symmetry under global gauge transformations to charge conservation. In continuum mechanics and field theories, these conservation laws are expressed as equations of continuity. The second theorem, an extension of the first, allows transformations with local gauge invariance, and the equations of continuity acquire the covariant derivative characteristic of coupled matter-field systems. General relativity, it turns out, exhibits local gauge invariance. Noether’s theorem also laid the foundation for later generations to apply local gauge invariance to theories of elementary particle interactions. In Dwight E. Neuenschwander’s new edition of Emmy Noether’s Wonderful Theorem, readers will encounter an updated explanation of Noether’s “first” theorem. The discussion of local gauge invariance has been expanded into a detailed presentation of the motivation, proof, and applications of the “second” theorem, including Noether’s resolution of concerns about general relativity. Other refinements in the new edition include an enlarged biography of Emmy Noether’s life and work, parallels drawn between the present approach and Noether’s original 1918 paper, and a summary of the logic behind Noether’s theorem.

Group-Theoretic Methods in Mechanics and Applied Mathematics

Download Group-Theoretic Methods in Mechanics and Applied Mathematics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482265222
Total Pages : 239 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Group-Theoretic Methods in Mechanics and Applied Mathematics by : D.M. Klimov

Download or read book Group-Theoretic Methods in Mechanics and Applied Mathematics written by D.M. Klimov and published by CRC Press. This book was released on 2014-04-21 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group analysis of differential equations has applications to various problems in nonlinear mechanics and physics. Group-Theoretic Methods in Mechanics and Applied Mathematics systematizes the group analysis of the main postulates of classical and relativistic mechanics. Exact solutions are given for the following equations: dynamics of rigid body, heat transfer, wave, hydrodynamics, Thomas-Fermi, and more. The author pays particular attention to the application of group analysis to developing asymptotic methods for problems with small parameters. This book is designed for a broad audience of scientists, engineers, and students in the fields of applied mathematics, mechanics and physics.

Symmetry and Integration Methods for Differential Equations

Download Symmetry and Integration Methods for Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387216499
Total Pages : 425 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Symmetry and Integration Methods for Differential Equations by : George Bluman

Download or read book Symmetry and Integration Methods for Differential Equations written by George Bluman and published by Springer Science & Business Media. This book was released on 2008-01-10 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text discusses Lie groups of transformations and basic symmetry methods for solving ordinary and partial differential equations. It places emphasis on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This new edition covers contact transformations, Lie-B cklund transformations, and adjoints and integrating factors for ODEs of arbitrary order.

Elementary Lie Group Analysis and Ordinary Differential Equations

Download Elementary Lie Group Analysis and Ordinary Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 :
Total Pages : 376 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Elementary Lie Group Analysis and Ordinary Differential Equations by : Nailʹ Khaĭrullovich Ibragimov

Download or read book Elementary Lie Group Analysis and Ordinary Differential Equations written by Nailʹ Khaĭrullovich Ibragimov and published by John Wiley & Sons. This book was released on 1999-05-04 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie group analysis, based on symmetry and invariance principles, is the only systematic method for solving nonlinear differential equations analytically. One of Lie's striking achievements was the discovery that the majority of classical devices for integration of special types of ordinary differential equations could be explained and deduced by his theory. Moreover, this theory provides a universal tool for tackling considerable numbers of differential equations when other means of integration fail. * This is the first modern text on ordinary differential equations where the basic integration methods are derived from Lie group theory * Includes a concise and self contained introduction to differential equations * Easy to follow and comprehensive introduction to Lie group analysis * The methods described in this book have many applications The author provides students and their teachers with a flexible text for undergraduate and postgraduate courses, spanning a variety of topics from the basic theory through to its many applications. The philosophy of Lie groups has become an essential part of the mathematical culture for anyone investigating mathematical models of physical, engineering and natural problems.

Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra

Download Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810228910
Total Pages : 380 pages
Book Rating : 4.2/5 (289 download)

DOWNLOAD NOW!


Book Synopsis Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra by : W.-H. Steeb

Download or read book Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra written by W.-H. Steeb and published by World Scientific. This book was released on 1996 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive introduction to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. It is suitable for students and research workers whose main interest lies in finding solutions to differential equations. It therefore caters for readers primarily interested in applied mathematics and physics rather than pure mathematics.The book provides an application-orientated text that is reasonably self-contained. A large number of worked examples have been included to help readers working independently of a teacher. The advance of algebraic computation has made it possible to write programs for the tedious calculations in this research field, and thus the book also makes a survey of computer algebra packages.