Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Studies In Numerical Analysis
Download Studies In Numerical Analysis full books in PDF, epub, and Kindle. Read online Studies In Numerical Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Numerical Analysis by : Larkin Ridgway Scott
Download or read book Numerical Analysis written by Larkin Ridgway Scott and published by Princeton University Press. This book was released on 2011-04-18 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that exist in current textbooks. For example, both necessary and sufficient conditions for convergence of basic iterative methods are covered, and proofs are given in full generality, not just based on special cases. The book is accessible to undergraduate mathematics majors as well as computational scientists wanting to learn the foundations of the subject. Presents the mathematical foundations of numerical analysis Explains the mathematical details behind simulation software Introduces many advanced concepts in modern analysis Self-contained and mathematically rigorous Contains problems and solutions in each chapter Excellent follow-up course to Principles of Mathematical Analysis by Rudin
Book Synopsis Numerical Analysis by : James M. Ortega
Download or read book Numerical Analysis written by James M. Ortega and published by SIAM. This book was released on 1990-01-01 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses some of the basic questions in numerical analysis: convergence theorems for iterative methods for both linear and nonlinear equations; discretization error, especially for ordinary differential equations; rounding error analysis; sensitivity of eigenvalues; and solutions of linear equations with respect to changes in the data.
Book Synopsis Numerical Methods, Software, and Analysis by : John Rischard Rice
Download or read book Numerical Methods, Software, and Analysis written by John Rischard Rice and published by McGraw-Hill Companies. This book was released on 1983 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis A Concise Introduction to Numerical Analysis by : A. C. Faul
Download or read book A Concise Introduction to Numerical Analysis written by A. C. Faul and published by CRC Press. This book was released on 2016-03-23 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides an accessible and concise introduction to numerical analysis for upper undergraduate and beginning graduate students from various backgrounds. It was developed from the lecture notes of four successful courses on numerical analysis taught within the MPhil of Scientific Computing at the University of Cambridge. The book is easily accessible, even to those with limited knowledge of mathematics. Students will get a concise, but thorough introduction to numerical analysis. In addition the algorithmic principles are emphasized to encourage a deeper understanding of why an algorithm is suitable, and sometimes unsuitable, for a particular problem. A Concise Introduction to Numerical Analysis strikes a balance between being mathematically comprehensive, but not overwhelming with mathematical detail. In some places where further detail was felt to be out of scope of the book, the reader is referred to further reading. The book uses MATLAB® implementations to demonstrate the workings of the method and thus MATLAB's own implementations are avoided, unless they are used as building blocks of an algorithm. In some cases the listings are printed in the book, but all are available online on the book’s page at www.crcpress.com. Most implementations are in the form of functions returning the outcome of the algorithm. Also, examples for the use of the functions are given. Exercises are included in line with the text where appropriate, and each chapter ends with a selection of revision exercises. Solutions to odd-numbered exercises are also provided on the book’s page at www.crcpress.com. This textbook is also an ideal resource for graduate students coming from other subjects who will use numerical techniques extensively in their graduate studies.
Book Synopsis A First Course in Numerical Methods by : Uri M. Ascher
Download or read book A First Course in Numerical Methods written by Uri M. Ascher and published by SIAM. This book was released on 2011-07-14 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers students a practical knowledge of modern techniques in scientific computing.
Book Synopsis A First Course in the Numerical Analysis of Differential Equations by : A. Iserles
Download or read book A First Course in the Numerical Analysis of Differential Equations written by A. Iserles and published by Cambridge University Press. This book was released on 2009 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Book Synopsis Theoretical Numerical Analysis by : Kendall Atkinson
Download or read book Theoretical Numerical Analysis written by Kendall Atkinson and published by Springer Science & Business Media. This book was released on 2001-03-09 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to functional analysis in a way that is tailored to fit the needs of the researcher or student. The book explains the basic results of functional analysis as well as relevant topics in numerical analysis. Applications of functional analysis are given by considering numerical methods for solving partial differential equations and integral equations. The material is especially useful for researchers and students who wish to work in theoretical numerical analysis and seek a background in the "tools of the trade" covered in this book.
Book Synopsis NUMERICAL ANALYSIS by : Vinay Vachharajani
Download or read book NUMERICAL ANALYSIS written by Vinay Vachharajani and published by BPB Publications. This book was released on 2018-06-01 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Description:This book is Designed to serve as a text book for the undergraduate as well as post graduate students of Mathematics, Engineering, Computer Science.COVERAGE:Concept of numbers and their accuracy, binary and decimal number system, limitations of floating point representation.Concept of error and their types, propagation of errors through process graph.Iterative methods for finding the roots of algebraic and transcendental equations with their convergence, methods to solve the set of non-linear equations, methods to obtain complex roots.Concept of matrices, the direct and iterative methods to solve a system of linear algebraic equations.Finite differences, interpolation and extrapolation methods, cubic spline, concept of curve fitting.Differentiation and integration methods.Solution of ordinary and partial differential equations SALIENT FEATURES:Chapters include objectives, learning outcomes, multiple choice questions, exercises for practice and solutions.Programs are written in C Language for Numerical methods.Topics are explained with suitable examples.Arrangement (Logical order), clarity, detailed presentation and explanation of each topic with numerous solved and unsolved examples.Concise but lucid and student friendly presentation for derivation of formulas used in various numerical methods. Table Of Contents:Computer ArithmeticError Analysis Solution of Algebraic and Transcendental Equations Solution of System of Linear Equations and Eigen value Problems Finite Differences Interpolation Curve Fitting and Approximation Numerical Differentiation Numerical Integration Difference Equations Numerical Solution of Ordinary Differential Equations Numerical Solution of Partial Differential Equations Appendix - I Case Studies / Applications Appendix - II Synthetic Division Bibliography Index
Book Synopsis Numerical Analysis by : Brian Sutton
Download or read book Numerical Analysis written by Brian Sutton and published by SIAM. This book was released on 2019-04-18 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook develops the fundamental skills of numerical analysis: designing numerical methods, implementing them in computer code, and analyzing their accuracy and efficiency. A number of mathematical problems?interpolation, integration, linear systems, zero finding, and differential equations?are considered, and some of the most important methods for their solution are demonstrated and analyzed. Notable features of this book include the development of Chebyshev methods alongside more classical ones; a dual emphasis on theory and experimentation; the use of linear algebra to solve problems from analysis, which enables students to gain a greater appreciation for both subjects; and many examples and exercises. Numerical Analysis: Theory and Experiments is designed to be the primary text for a junior- or senior-level undergraduate course in numerical analysis for mathematics majors. Scientists and engineers interested in numerical methods, particularly those seeking an accessible introduction to Chebyshev methods, will also be interested in this book.
Book Synopsis Introduction to Numerical Analysis by : J. Stoer
Download or read book Introduction to Numerical Analysis written by J. Stoer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.
Book Synopsis A History of Numerical Analysis from the 16th through the 19th Century by : H. H. Goldstine
Download or read book A History of Numerical Analysis from the 16th through the 19th Century written by H. H. Goldstine and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book I have attempted to trace the development of numerical analysis during the period in which the foundations of the modern theory were being laid. To do this I have had to exercise a certain amount of selectivity in choosing and in rejecting both authors and papers. I have rather arbitrarily chosen, in the main, the most famous mathematicians of the period in question and have concentrated on their major works in numerical analysis at the expense, perhaps, of other lesser known but capable analysts. This selectivity results from the need to choose from a large body of literature, and from my feeling that almost by definition the great masters of mathematics were the ones responsible for the most significant accomplishments. In any event I must accept full responsibility for the choices. I would particularly like to acknowledge my thanks to Professor Otto Neugebauer for his help and inspiration in the preparation of this book. This consisted of many friendly discussions that I will always value. I should also like to express my deep appreciation to the International Business Machines Corporation of which I have the honor of being a Fellow and in particular to Dr. Ralph E. Gomory, its Vice-President for Research, for permitting me to undertake the writing of this book and for helping make it possible by his continuing encouragement and support.
Book Synopsis Numerical Analysis Using R by : Graham W. Griffiths
Download or read book Numerical Analysis Using R written by Graham W. Griffiths and published by Cambridge University Press. This book was released on 2016-04-26 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R.
Book Synopsis Nonlinear Methods in Numerical Analysis by : A. Cuyt
Download or read book Nonlinear Methods in Numerical Analysis written by A. Cuyt and published by Elsevier. This book was released on 1987-03-01 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: While most textbooks on Numerical Analysis discuss linear techniques for the solution of various numerical problems, this book introduces and illustrates nonlinear methods. It presents several nonlinear techniques resulting mainly from the use of Padé approximants and rational interpolants.
Book Synopsis Numerical Analysis of Wavelet Methods by : A. Cohen
Download or read book Numerical Analysis of Wavelet Methods written by A. Cohen and published by Elsevier. This book was released on 2003-04-29 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coefficients. The theoretical pillar that underlies such properties involves approximation theory and function spaces, and plays a pivotal role in the analysis of wavelet-based numerical methods. This book offers a self-contained treatment of wavelets, which includes this theoretical pillar and it applications to the numerical treatment of partial differential equations. Its key features are:1. Self-contained introduction to wavelet bases and related numerical algorithms, from the simplest examples to the most numerically useful general constructions.2. Full treatment of the theoretical foundations that are crucial for the analysisof wavelets and other related multiscale methods : function spaces, linear and nonlinear approximation, interpolation theory.3. Applications of these concepts to the numerical treatment of partial differential equations : multilevel preconditioning, sparse approximations of differential and integral operators, adaptive discretization strategies.
Book Synopsis Numerical Methods in Biomedical Engineering by : Stanley Dunn
Download or read book Numerical Methods in Biomedical Engineering written by Stanley Dunn and published by Elsevier. This book was released on 2005-11-21 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Modeling in Biomedical Engineering brings together the integrative set of computational problem solving tools important to biomedical engineers. Through the use of comprehensive homework exercises, relevant examples and extensive case studies, this book integrates principles and techniques of numerical analysis. Covering biomechanical phenomena and physiologic, cell and molecular systems, this is an essential tool for students and all those studying biomedical transport, biomedical thermodynamics & kinetics and biomechanics. - Supported by Whitaker Foundation Teaching Materials Program; ABET-oriented pedagogical layout - Extensive hands-on homework exercises
Book Synopsis Using R for Numerical Analysis in Science and Engineering by : Victor A. Bloomfield
Download or read book Using R for Numerical Analysis in Science and Engineering written by Victor A. Bloomfield and published by CRC Press. This book was released on 2018-09-03 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.
Book Synopsis Numerical Methods in Scientific Computing by : Germund Dahlquist
Download or read book Numerical Methods in Scientific Computing written by Germund Dahlquist and published by SIAM. This book was released on 2008-01-01 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.