Structure of Dynamical Systems

Download Structure of Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461202817
Total Pages : 427 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Structure of Dynamical Systems by : J.M. Souriau

Download or read book Structure of Dynamical Systems written by J.M. Souriau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to treat all three basic theories of physics, namely, classical mechanics, statistical mechanics, and quantum mechanics from the same perspective, that of symplectic geometry, thus showing the unifying power of the symplectic geometric approach. Reading this book will give the reader a deep understanding of the interrelationships between the three basic theories of physics. This book is addressed to graduate students and researchers in mathematics and physics who are interested in mathematical and theoretical physics, symplectic geometry, mechanics, and (geometric) quantization.

An Introduction to Sequential Dynamical Systems

Download An Introduction to Sequential Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387498796
Total Pages : 261 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Sequential Dynamical Systems by : Henning Mortveit

Download or read book An Introduction to Sequential Dynamical Systems written by Henning Mortveit and published by Springer Science & Business Media. This book was released on 2007-11-27 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory text to the class of Sequential Dynamical Systems (SDS) is the first textbook on this timely subject. Driven by numerous examples and thought-provoking problems throughout, the presentation offers good foundational material on finite discrete dynamical systems, which then leads systematically to an introduction of SDS. From a broad range of topics on structure theory - equivalence, fixed points, invertibility and other phase space properties - thereafter SDS relations to graph theory, classical dynamical systems as well as SDS applications in computer science are explored. This is a versatile interdisciplinary textbook.

Turbulence, Coherent Structures, Dynamical Systems and Symmetry

Download Turbulence, Coherent Structures, Dynamical Systems and Symmetry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107008255
Total Pages : 403 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Turbulence, Coherent Structures, Dynamical Systems and Symmetry by : Philip Holmes

Download or read book Turbulence, Coherent Structures, Dynamical Systems and Symmetry written by Philip Holmes and published by Cambridge University Press. This book was released on 2012-02-23 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.

Structure of Dynamical Systems

Download Structure of Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817636951
Total Pages : 450 pages
Book Rating : 4.6/5 (369 download)

DOWNLOAD NOW!


Book Synopsis Structure of Dynamical Systems by : J.M. Souriau

Download or read book Structure of Dynamical Systems written by J.M. Souriau and published by Springer Science & Business Media. This book was released on 1997-09-23 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to treat all three basic theories of physics, namely, classical mechanics, statistical mechanics, and quantum mechanics from the same perspective, that of symplectic geometry, thus showing the unifying power of the symplectic geometric approach. Reading this book will give the reader a deep understanding of the interrelationships between the three basic theories of physics. This book is addressed to graduate students and researchers in mathematics and physics who are interested in mathematical and theoretical physics, symplectic geometry, mechanics, and (geometric) quantization.

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

Download Introduction to Hamiltonian Dynamical Systems and the N-Body Problem PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319536915
Total Pages : 389 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Hamiltonian Dynamical Systems and the N-Body Problem by : Kenneth R. Meyer

Download or read book Introduction to Hamiltonian Dynamical Systems and the N-Body Problem written by Kenneth R. Meyer and published by Springer. This book was released on 2017-05-04 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) β€œThe second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)

Dynamical Systems, Graphs, and Algorithms

Download Dynamical Systems, Graphs, and Algorithms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540355952
Total Pages : 286 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems, Graphs, and Algorithms by : George Osipenko

Download or read book Dynamical Systems, Graphs, and Algorithms written by George Osipenko and published by Springer. This book was released on 2006-10-28 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a family of algorithms for studying the global structure of systems. By a finite covering of the phase space we construct a directed graph with vertices corresponding to cells of the covering and edges corresponding to admissible transitions. The method is used, among other things, to locate the periodic orbits and the chain recurrent set, to construct the attractors and their basins, to estimate the entropy, and more.

Differential Dynamical Systems, Revised Edition

Download Differential Dynamical Systems, Revised Edition PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 161197464X
Total Pages : 410 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Differential Dynamical Systems, Revised Edition by : James D. Meiss

Download or read book Differential Dynamical Systems, Revised Edition written by James D. Meiss and published by SIAM. This book was released on 2017-01-24 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.

Introduction to the Modern Theory of Dynamical Systems

Download Introduction to the Modern Theory of Dynamical Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521575577
Total Pages : 828 pages
Book Rating : 4.5/5 (755 download)

DOWNLOAD NOW!


Book Synopsis Introduction to the Modern Theory of Dynamical Systems by : Anatole Katok

Download or read book Introduction to the Modern Theory of Dynamical Systems written by Anatole Katok and published by Cambridge University Press. This book was released on 1995 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.

Dynamical Systems IV

Download Dynamical Systems IV PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662067935
Total Pages : 291 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems IV by : V.I. Arnol'd

Download or read book Dynamical Systems IV written by V.I. Arnol'd and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes a snapshot of the mathematical foundations of classical and quantum mechanics from a contemporary mathematical viewpoint. It covers a number of important recent developments in dynamical systems and mathematical physics and places them in the framework of the more classical approaches; the presentation is enhanced by many illustrative examples concerning topics which have been of especial interest to workers in the field, and by sketches of the proofs of the major results. The comprehensive bibliographies are designed to permit the interested reader to retrace the major stages in the development of the field if he wishes. Not so much a detailed textbook for plodding students, this volume, like the others in the series, is intended to lead researchers in other fields and advanced students quickly to an understanding of the 'state of the art' in this area of mathematics. As such it will serve both as a basic reference work on important areas of mathematical physics as they stand today, and as a good starting point for further, more detailed study for people new to this field.

An Introduction to Hybrid Dynamical Systems

Download An Introduction to Hybrid Dynamical Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1846285429
Total Pages : 189 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Hybrid Dynamical Systems by : Arjan J. van der Schaft

Download or read book An Introduction to Hybrid Dynamical Systems written by Arjan J. van der Schaft and published by Springer. This book was released on 2007-10-03 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.

Invitation to Dynamical Systems

Download Invitation to Dynamical Systems PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486485943
Total Pages : 402 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Invitation to Dynamical Systems by : Edward R. Scheinerman

Download or read book Invitation to Dynamical Systems written by Edward R. Scheinerman and published by Courier Corporation. This book was released on 2012-01-01 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is designed for those who wish to study mathematics beyond linear algebra but are not ready for abstract material. Rather than a theorem-proof-corollary-remark style of exposition, it stresses geometry, intuition, and dynamical systems. An appendix explains how to write MATLAB, Mathematica, and C programs to compute dynamical systems. 1996 edition.

Dimension Theory in Dynamical Systems

Download Dimension Theory in Dynamical Systems PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 0226662233
Total Pages : 633 pages
Book Rating : 4.2/5 (266 download)

DOWNLOAD NOW!


Book Synopsis Dimension Theory in Dynamical Systems by : Yakov B. Pesin

Download or read book Dimension Theory in Dynamical Systems written by Yakov B. Pesin and published by University of Chicago Press. This book was released on 2008-04-15 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principles of symmetry and self-similarity structure nature's most beautiful creations. For example, they are expressed in fractals, famous for their beautiful but complicated geometric structure, which is the subject of study in dimension theory. And in dynamics the presence of invariant fractals often results in unstable "turbulent-like" motions and is associated with "chaotic" behavior. In this book, Yakov Pesin introduces a new area of research that has recently appeared in the interface between dimension theory and the theory of dynamical systems. Focusing on invariant fractals and their influence on stochastic properties of systems, Pesin provides a comprehensive and systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes the most important accomplishments of this field. Pesin's synthesis of these subjects of broad current research interest will be appreciated both by advanced mathematicians and by a wide range of scientists who depend upon mathematical modeling of dynamical processes.

Differential Geometry and Topology

Download Differential Geometry and Topology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781584882534
Total Pages : 408 pages
Book Rating : 4.8/5 (825 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry and Topology by : Keith Burns

Download or read book Differential Geometry and Topology written by Keith Burns and published by CRC Press. This book was released on 2005-05-27 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.

Dynamical Systems and Microphysics

Download Dynamical Systems and Microphysics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783709143315
Total Pages : 412 pages
Book Rating : 4.1/5 (433 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems and Microphysics by : A. Blaquiere

Download or read book Dynamical Systems and Microphysics written by A. Blaquiere and published by Springer. This book was released on 2014-10-08 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis

Download Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814462713
Total Pages : 563 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis by : Denis Blackmore

Download or read book Nonlinear Dynamical Systems Of Mathematical Physics: Spectral And Symplectic Integrability Analysis written by Denis Blackmore and published by World Scientific. This book was released on 2011-03-04 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: This distinctive volume presents a clear, rigorous grounding in modern nonlinear integrable dynamics theory and applications in mathematical physics, and an introduction to timely leading-edge developments in the field β€” including some innovations by the authors themselves β€” that have not appeared in any other book.The exposition begins with an introduction to modern integrable dynamical systems theory, treating such topics as Liouville-Arnold and Mischenko-Fomenko integrability. This sets the stage for such topics as new formulations of the gradient-holonomic algorithm for Lax integrability, novel treatments of classical integration by quadratures, Lie-algebraic characterizations of integrability, and recent results on tensor Poisson structures. Of particular note is the development via spectral reduction of a generalized de Rham-Hodge theory, related to Delsarte-Lions operators, leading to new Chern type classes useful for integrability analysis. Also included are elements of quantum mathematics along with applications to Whitham systems, gauge theories, hadronic string models, and a supplement on fundamental differential-geometric concepts making this volume essentially self-contained.This book is ideal as a reference and guide to new directions in research for advanced students and researchers interested in the modern theory and applications of integrable (especially infinite-dimensional) dynamical systems.

Dynamical Systems and Chaos

Download Dynamical Systems and Chaos PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441968709
Total Pages : 313 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Dynamical Systems and Chaos by : Henk Broer

Download or read book Dynamical Systems and Chaos written by Henk Broer and published by Springer Science & Business Media. This book was released on 2010-10-20 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chapters have been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section. The book is also directed towards researchers, where one of the challenges is to help applied researchers acquire background for a better understanding of the data that computer simulation or experiment may provide them with the development of the theory.

Mathematics of Complexity and Dynamical Systems

Download Mathematics of Complexity and Dynamical Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461418054
Total Pages : 1885 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Mathematics of Complexity and Dynamical Systems by : Robert A. Meyers

Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.