Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions

Download Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540481613
Total Pages : 248 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions by : N.V. Krylov

Download or read book Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions written by N.V. Krylov and published by Springer. This book was released on 2006-11-15 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kolmogorov equations are second order parabolic equations with a finite or an infinite number of variables. They are deeply connected with stochastic differential equations in finite or infinite dimensional spaces. They arise in many fields as Mathematical Physics, Chemistry and Mathematical Finance. These equations can be studied both by probabilistic and by analytic methods, using such tools as Gaussian measures, Dirichlet Forms, and stochastic calculus. The following courses have been delivered: N.V. Krylov presented Kolmogorov equations coming from finite-dimensional equations, giving existence, uniqueness and regularity results. M. Röckner has presented an approach to Kolmogorov equations in infinite dimensions, based on an LP-analysis of the corresponding diffusion operators with respect to suitably chosen measures. J. Zabczyk started from classical results of L. Gross, on the heat equation in infinite dimension, and discussed some recent results.

Stochastic Equations in Infinite Dimensions

Download Stochastic Equations in Infinite Dimensions PDF Online Free

Author :
Publisher :
ISBN 13 : 9781306148061
Total Pages : pages
Book Rating : 4.1/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Equations in Infinite Dimensions by : Da Prato Guiseppe

Download or read book Stochastic Equations in Infinite Dimensions written by Da Prato Guiseppe and published by . This book was released on 2013-11-21 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Ito and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations."

Introduction to Infinite Dimensional Stochastic Analysis

Download Introduction to Infinite Dimensional Stochastic Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401141088
Total Pages : 308 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Infinite Dimensional Stochastic Analysis by : Zhi-yuan Huang

Download or read book Introduction to Infinite Dimensional Stochastic Analysis written by Zhi-yuan Huang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).

An Introduction to Infinite-Dimensional Analysis

Download An Introduction to Infinite-Dimensional Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540290214
Total Pages : 217 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Infinite-Dimensional Analysis by : Giuseppe Da Prato

Download or read book An Introduction to Infinite-Dimensional Analysis written by Giuseppe Da Prato and published by Springer Science & Business Media. This book was released on 2006-08-25 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.

Stochastic Optimal Control in Infinite Dimension

Download Stochastic Optimal Control in Infinite Dimension PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319530674
Total Pages : 928 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Optimal Control in Infinite Dimension by : Giorgio Fabbri

Download or read book Stochastic Optimal Control in Infinite Dimension written by Giorgio Fabbri and published by Springer. This book was released on 2017-06-22 with total page 928 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.

Ergodicity for Infinite Dimensional Systems

Download Ergodicity for Infinite Dimensional Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521579007
Total Pages : 355 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Ergodicity for Infinite Dimensional Systems by : Giuseppe Da Prato

Download or read book Ergodicity for Infinite Dimensional Systems written by Giuseppe Da Prato and published by Cambridge University Press. This book was released on 1996-05-16 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the only book on stochastic modelling of infinite dimensional dynamical systems.

Stochastic Partial Differential Equations, Second Edition

Download Stochastic Partial Differential Equations, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466579552
Total Pages : 336 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Partial Differential Equations, Second Edition by : Pao-Liu Chow

Download or read book Stochastic Partial Differential Equations, Second Edition written by Pao-Liu Chow and published by CRC Press. This book was released on 2014-12-10 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore Theory and Techniques to Solve Physical, Biological, and Financial Problems Since the first edition was published, there has been a surge of interest in stochastic partial differential equations (PDEs) driven by the Lévy type of noise. Stochastic Partial Differential Equations, Second Edition incorporates these recent developments and improves the presentation of material. New to the Second Edition Two sections on the Lévy type of stochastic integrals and the related stochastic differential equations in finite dimensions Discussions of Poisson random fields and related stochastic integrals, the solution of a stochastic heat equation with Poisson noise, and mild solutions to linear and nonlinear parabolic equations with Poisson noises Two sections on linear and semilinear wave equations driven by the Poisson type of noises Treatment of the Poisson stochastic integral in a Hilbert space and mild solutions of stochastic evolutions with Poisson noises Revised proofs and new theorems, such as explosive solutions of stochastic reaction diffusion equations Additional applications of stochastic PDEs to population biology and finance Updated section on parabolic equations and related elliptic problems in Gauss–Sobolev spaces The book covers basic theory as well as computational and analytical techniques to solve physical, biological, and financial problems. It first presents classical concrete problems before proceeding to a unified theory of stochastic evolution equations and describing applications, such as turbulence in fluid dynamics, a spatial population growth model in a random environment, and a stochastic model in bond market theory. The author also explores the connection of stochastic PDEs to infinite-dimensional stochastic analysis.

Applied Stochastic Differential Equations

Download Applied Stochastic Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316510085
Total Pages : 327 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Stochastic Cauchy Problems in Infinite Dimensions

Download Stochastic Cauchy Problems in Infinite Dimensions PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315360268
Total Pages : 281 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Cauchy Problems in Infinite Dimensions by : Irina V. Melnikova

Download or read book Stochastic Cauchy Problems in Infinite Dimensions written by Irina V. Melnikova and published by CRC Press. This book was released on 2018-09-03 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions presents stochastic differential equations for random processes with values in Hilbert spaces. Accessible to non-specialists, the book explores how modern semi-group and distribution methods relate to the methods of infinite-dimensional stochastic analysis. It also shows how the idea of regularization in a broad sense pervades all these methods and is useful for numerical realization and applications of the theory. The book presents generalized solutions to the Cauchy problem in its initial form with white noise processes in spaces of distributions. It also covers the "classical" approach to stochastic problems involving the solution of corresponding integral equations. The first part of the text gives a self-contained introduction to modern semi-group and abstract distribution methods for solving the homogeneous (deterministic) Cauchy problem. In the second part, the author solves stochastic problems using semi-group and distribution methods as well as the methods of infinite-dimensional stochastic analysis.

Stochastic Partial Differential Equations and Applications - VII

Download Stochastic Partial Differential Equations and Applications - VII PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420028723
Total Pages : 360 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Partial Differential Equations and Applications - VII by : Giuseppe Da Prato

Download or read book Stochastic Partial Differential Equations and Applications - VII written by Giuseppe Da Prato and published by CRC Press. This book was released on 2005-10-12 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Partial Differential Equations and Applications gives an overview of current state-of-the-art stochastic PDEs in several fields, such as filtering theory, stochastic quantization, quantum probability, and mathematical finance. Featuring contributions from leading expert participants at an international conference on the subject, this boo

Stochastic Processes and Applications

Download Stochastic Processes and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493913239
Total Pages : 345 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Processes and Applications by : Grigorios A. Pavliotis

Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Fokker-Planck-Kolmogorov Equations

Download Fokker-Planck-Kolmogorov Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470425580
Total Pages : 495 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Fokker-Planck-Kolmogorov Equations by : Vladimir I. Bogachev

Download or read book Fokker-Planck-Kolmogorov Equations written by Vladimir I. Bogachev and published by American Mathematical Soc.. This book was released on 2015-12-17 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker-Planck-Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations.

Stochastic Partial Differential Equations with Lévy Noise

Download Stochastic Partial Differential Equations with Lévy Noise PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521879892
Total Pages : 45 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Partial Differential Equations with Lévy Noise by : S. Peszat

Download or read book Stochastic Partial Differential Equations with Lévy Noise written by S. Peszat and published by Cambridge University Press. This book was released on 2007-10-11 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive monograph by two leading international experts; includes applications to statistical and fluid mechanics and to finance.

Lectures on Topological Fluid Mechanics

Download Lectures on Topological Fluid Mechanics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642008364
Total Pages : 240 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Topological Fluid Mechanics by : Mitchell A. Berger

Download or read book Lectures on Topological Fluid Mechanics written by Mitchell A. Berger and published by Springer Science & Business Media. This book was released on 2009-05-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a wide-ranging collection of valuable research papers written by some of the most eminent experts in the field. Topics range from fundamental aspects of mathematical fluid mechanics to DNA tangles and knotted DNAs in sedimentation.

Enumerative Invariants in Algebraic Geometry and String Theory

Download Enumerative Invariants in Algebraic Geometry and String Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540798137
Total Pages : 219 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Enumerative Invariants in Algebraic Geometry and String Theory by : Marcos Marino

Download or read book Enumerative Invariants in Algebraic Geometry and String Theory written by Marcos Marino and published by Springer Science & Business Media. This book was released on 2008-08-22 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting in the middle of the 80s, there has been a growing and fruitful interaction between algebraic geometry and certain areas of theoretical high-energy physics, especially the various versions of string theory. Physical heuristics have provided inspiration for new mathematical definitions (such as that of Gromov-Witten invariants) leading in turn to the solution of problems in enumerative geometry. Conversely, the availability of mathematically rigorous definitions and theorems has benefited the physics research by providing the required evidence in fields where experimental testing seems problematic. The aim of this volume, a result of the CIME Summer School held in Cetraro, Italy, in 2005, is to cover part of the most recent and interesting findings in this subject.

Pseudo-Differential Operators

Download Pseudo-Differential Operators PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 354068266X
Total Pages : 235 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Pseudo-Differential Operators by : Hans G. Feichtinger

Download or read book Pseudo-Differential Operators written by Hans G. Feichtinger and published by Springer Science & Business Media. This book was released on 2008-08-11 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pseudo-differential operators were initiated by Kohn, Nirenberg and Hörmander in the sixties of the last century. Beside applications in the general theory of partial differential equations, they have their roots also in the study of quantization first envisaged by Hermann Weyl thirty years earlier. Thanks to the understanding of the connections of wavelets with other branches of mathematical analysis, quantum physics and engineering, such operators have been used under different names as mathematical models in signal analysis since the last decade of the last century. The volume investigates the mathematics of quantization and signals in the context of pseudo-differential operators, Weyl transforms, Daubechies operators, Wick quantization and time-frequency localization operators. Applications to quantization, signal analysis and the modern theory of PDE are highlighted.

Mixed Finite Elements, Compatibility Conditions, and Applications

Download Mixed Finite Elements, Compatibility Conditions, and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540783148
Total Pages : 253 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Mixed Finite Elements, Compatibility Conditions, and Applications by : Daniele Boffi

Download or read book Mixed Finite Elements, Compatibility Conditions, and Applications written by Daniele Boffi and published by Springer Science & Business Media. This book was released on 2008-04-14 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the early 70's, mixed finite elements have been the object of a wide and deep study by the mathematical and engineering communities. The fundamental role of this method for many application fields has been worldwide recognized and its use has been introduced in several commercial codes. An important feature of mixed finite elements is the interplay between theory and application. Discretization spaces for mixed schemes require suitable compatibilities, so that simple minded approximations generally do not work and the design of appropriate stabilizations gives rise to challenging mathematical problems. This volume collects the lecture notes of a C.I.M.E. course held in Summer 2006, when some of the most world recognized experts in the field reviewed the rigorous setting of mixed finite elements and revisited it after more than 30 years of practice. Applications, in this volume, range from traditional ones, like fluid-dynamics or elasticity, to more recent and active fields, like electromagnetism.