Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Statistics In Matlab
Download Statistics In Matlab full books in PDF, epub, and Kindle. Read online Statistics In Matlab ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Statistics in MATLAB by : MoonJung Cho
Download or read book Statistics in MATLAB written by MoonJung Cho and published by CRC Press. This book was released on 2014-12-15 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer provides an accessible introduction to MATLAB version 8 and its extensive functionality for statistics. Fulfilling the need for a practical user's guide, the book covers capabilities in the main MATLAB package, the Statistics Toolbox, and the student version of MATLAB, presenting examples of how MATLAB can be used to analyze data. It explains how to determine what method should be used for analysis, and includes figures, visual aids, and access to a companion website with data sets and additional examples.
Book Synopsis Computational Statistics Handbook with MATLAB by : Wendy L. Martinez
Download or read book Computational Statistics Handbook with MATLAB written by Wendy L. Martinez and published by CRC Press. This book was released on 2007-12-20 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: As with the bestselling first edition, Computational Statistics Handbook with MATLAB, Second Edition covers some of the most commonly used contemporary techniques in computational statistics. With a strong, practical focus on implementing the methods, the authors include algorithmic descriptions of the procedures as well as
Book Synopsis Statistics in Engineering by : Andrew Metcalfe
Download or read book Statistics in Engineering written by Andrew Metcalfe and published by CRC Press. This book was released on 2019-01-25 with total page 811 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers are expected to design structures and machines that can operate in challenging and volatile environments, while allowing for variation in materials and noise in measurements and signals. Statistics in Engineering, Second Edition: With Examples in MATLAB and R covers the fundamentals of probability and statistics and explains how to use these basic techniques to estimate and model random variation in the context of engineering analysis and design in all types of environments. The first eight chapters cover probability and probability distributions, graphical displays of data and descriptive statistics, combinations of random variables and propagation of error, statistical inference, bivariate distributions and correlation, linear regression on a single predictor variable, and the measurement error model. This leads to chapters including multiple regression; comparisons of several means and split-plot designs together with analysis of variance; probability models; and sampling strategies. Distinctive features include: All examples based on work in industry, consulting to industry, and research for industry Examples and case studies include all engineering disciplines Emphasis on probabilistic modeling including decision trees, Markov chains and processes, and structure functions Intuitive explanations are followed by succinct mathematical justifications Emphasis on random number generation that is used for stochastic simulations of engineering systems, demonstration of key concepts, and implementation of bootstrap methods for inference Use of MATLAB and the open source software R, both of which have an extensive range of statistical functions for standard analyses and also enable programing of specific applications Use of multiple regression for times series models and analysis of factorial and central composite designs Inclusion of topics such as Weibull analysis of failure times and split-plot designs that are commonly used in industry but are not usually included in introductory textbooks Experiments designed to show fundamental concepts that have been tested with large classes working in small groups Website with additional materials that is regularly updated Andrew Metcalfe, David Green, Andrew Smith, and Jonathan Tuke have taught probability and statistics to students of engineering at the University of Adelaide for many years and have substantial industry experience. Their current research includes applications to water resources engineering, mining, and telecommunications. Mahayaudin Mansor worked in banking and insurance before teaching statistics and business mathematics at the Universiti Tun Abdul Razak Malaysia and is currently a researcher specializing in data analytics and quantitative research in the Health Economics and Social Policy Research Group at the Australian Centre for Precision Health, University of South Australia. Tony Greenfield, formerly Head of Process Computing and Statistics at the British Iron and Steel Research Association, is a statistical consultant. He has been awarded the Chambers Medal for outstanding services to the Royal Statistical Society; the George Box Medal by the European Network for Business and Industrial Statistics for Outstanding Contributions to Industrial Statistics; and the William G. Hunter Award by the American Society for Quality.
Author :Joaquim P. Marques de Sá Publisher :Springer Science & Business Media ISBN 13 :3662058049 Total Pages :466 pages Book Rating :4.6/5 (62 download)
Book Synopsis Applied Statistics Using SPSS, STATISTICA and MATLAB by : Joaquim P. Marques de Sá
Download or read book Applied Statistics Using SPSS, STATISTICA and MATLAB written by Joaquim P. Marques de Sá and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming no previous statistics education, this practical reference provides a comprehensive introduction and tutorial on the main statistical analysis topics, demonstrating their solution with the most common software package. Intended for anyone needing to apply statistical analysis to a large variety of science and enigineering problems, the book explains and shows how to use SPSS, MATLAB, STATISTICA and R for analysis such as data description, statistical inference, classification and regression, factor analysis, survival data and directional statistics. It concisely explains key concepts and methods, illustrated by practical examples using real data, and includes a CD-ROM with software tools and data sets used in the examples and exercises. Readers learn which software tools to apply and also gain insights into the comparative capabilities of the primary software packages.
Book Synopsis Probability and Statistics for Computer Scientists, Second Edition by : Michael Baron
Download or read book Probability and Statistics for Computer Scientists, Second Edition written by Michael Baron and published by CRC Press. This book was released on 2013-08-05 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.
Book Synopsis Matlab: Data Analysis And Visualization by : Antonio Siciliano
Download or read book Matlab: Data Analysis And Visualization written by Antonio Siciliano and published by World Scientific Publishing Company. This book was released on 2008-10-20 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATLAB is currently the language of technical computing most known and used in academia, industry and services. It is composed of a set of tools and a very large number of functions, graphics objects with associated properties and operators.The book begins by looking at the main tools, in particular the Desktop, the Command and History Window, the Editor and the Help Browser. The selected number of functions, graphics objects, related properties and operators, considered fundamental in MATLAB, is a unique and remarkable feature of this book. These basic elements are minutely treated both formally and through examples.The arrangement of every data type as an array is another prominent emphasis of the book. Numerical data used in advanced mathematics usually defined as vectors or matrices are only one example. Others include logical values, strings of characters, dates, images, etc.Standard programming structures, like the many patterns of user functions and of the flow controls, are highlighted.The basic elements of data visualization — the main graphics objects and their properties — are also carefully examined.
Book Synopsis Exploratory Data Analysis with MATLAB by : Wendy L. Martinez
Download or read book Exploratory Data Analysis with MATLAB written by Wendy L. Martinez and published by CRC Press. This book was released on 2017-08-07 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data
Book Synopsis Analysis of Neural Data by : Robert E. Kass
Download or read book Analysis of Neural Data written by Robert E. Kass and published by Springer. This book was released on 2014-07-08 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.
Book Synopsis Computational Statistics Handbook with MATLAB by : Wendy L. Martinez
Download or read book Computational Statistics Handbook with MATLAB written by Wendy L. Martinez and published by CRC Press. This book was released on 2001-09-26 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approaching computational statistics through its theoretical aspects can be daunting. Often intimidated or distracted by the theory, researchers and students can lose sight of the actual goals and applications of the subject. What they need are its key concepts, an understanding of its methods, experience with its implementation, and practice with
Book Synopsis An Introduction to MATLAB for Behavioral Researchers by : Christopher R. Madan
Download or read book An Introduction to MATLAB for Behavioral Researchers written by Christopher R. Madan and published by SAGE Publications. This book was released on 2013-12-18 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATLAB is a powerful data analysis program, but many behavioral science researchers find it too daunting to learn and use. An Introduction to MATLAB for Behavioral Researchers is an easy-to-understand, hands-on guide for behavioral researchers who have no prior programming experience. Written in a conversational and non-intimidating style, the author walks students—step by step—through analyzing real experimental data. Topics covered include the basics of programming, the implementation of simple behavioral analyses, and how to make publication-ready figures. More advanced topics such as pseudo-randomization of trial sequences to meet specified criteria and working with psycholinguistic data are also covered. Interesting behavioral science examples and datasets from published studies, such as visualizing fixation patterns in eye-tracking studies and animal search behavior in two-dimensional space, help develop an intuition for data analysis, which is essential and can only be developed when working with real research problems and real data.
Book Synopsis Data Analysis in Sport by : Peter O'Donoghue
Download or read book Data Analysis in Sport written by Peter O'Donoghue and published by Routledge. This book was released on 2014-10-24 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making sense of sports performance data can be a challenging task but is nevertheless an essential part of performance analysis investigations. Focusing on techniques used in the analysis of sport performance, this book introduces the fundamental principles of data analysis, explores the most important tools used in data analysis, and offers guidance on the presentation of results. The book covers key topics such as: The purpose of data analysis, from statistical analysis to algorithmic processing Commercial packages for performance and data analysis, including Focus, Sportscode, Dartfish, Prozone, Excel, SPSS and Matlab Effective use of statistical procedures in sport performance analysis Analysing data from manual notation systems, player tracking systems and computerized match analysis systems Creating visually appealing ‘dashboard’ interfaces for presenting data Assessing reliability. The book includes worked examples from real sport, offering clear guidance to the reader and bringing the subject to life. This book is invaluable reading for any student, researcher or analyst working in sport performance or undertaking a sport-related research project or methods course
Book Synopsis MATLAB® Recipes for Earth Sciences by : Martin H. Trauth
Download or read book MATLAB® Recipes for Earth Sciences written by Martin H. Trauth and published by Springer Science & Business Media. This book was released on 2007 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces methods of data analysis in geosciences using MATLAB such as basic statistics for univariate, bivariate and multivariate datasets, jackknife and bootstrap resampling schemes, processing of digital elevation models, gridding and contouring, geostatistics and kriging, processing and georeferencing of satellite images, digitizing from the screen, linear and nonlinear time-series analysis and the application of linear time-invariant and adaptive filters. Includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences.
Book Synopsis Functional Data Analysis with R and MATLAB by : James Ramsay
Download or read book Functional Data Analysis with R and MATLAB written by James Ramsay and published by Springer Science & Business Media. This book was released on 2009-06-29 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems
Book Synopsis Environmental Data Analysis with MatLab by : William Menke
Download or read book Environmental Data Analysis with MatLab written by William Menke and published by Elsevier. This book was released on 2011-09-02 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Environmental Data Analysis with MatLab" is for students and researchers working to analyze real data sets in the environmental sciences. One only has to consider the global warming debate to realize how critically important it is to be able to derive clear conclusions from often-noisy data drawn from a broad range of sources. This book teaches the basics of the underlying theory of data analysis, and then reinforces that knowledge with carefully chosen, realistic scenarios. MatLab, a commercial data processing environment, is used in these scenarios; significant content is devoted to teaching how it can be effectively used in an environmental data analysis setting. The book, though written in a self-contained way, is supplemented with data sets and MatLab scripts that can be used as a data analysis tutorial. It is well written and outlines a clear learning path for researchers and students. It uses real world environmental examples and case studies. It has MatLab software for application in a readily-available software environment. Homework problems help user follow up upon case studies with homework that expands them.
Book Synopsis Analyzing Neural Time Series Data by : Mike X Cohen
Download or read book Analyzing Neural Time Series Data written by Mike X Cohen and published by MIT Press. This book was released on 2014-01-17 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.
Book Synopsis Statistical Signal Processing in Engineering by : Umberto Spagnolini
Download or read book Statistical Signal Processing in Engineering written by Umberto Spagnolini and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: A problem-solving approach to statistical signal processing for practicing engineers, technicians, and graduate students This book takes a pragmatic approach in solving a set of common problems engineers and technicians encounter when processing signals. In writing it, the author drew on his vast theoretical and practical experience in the field to provide a quick-solution manual for technicians and engineers, offering field-tested solutions to most problems engineers can encounter. At the same time, the book delineates the basic concepts and applied mathematics underlying each solution so that readers can go deeper into the theory to gain a better idea of the solution’s limitations and potential pitfalls, and thus tailor the best solution for the specific engineering application. Uniquely, Statistical Signal Processing in Engineering can also function as a textbook for engineering graduates and post-graduates. Dr. Spagnolini, who has had a quarter of a century of experience teaching graduate-level courses in digital and statistical signal processing methods, provides a detailed axiomatic presentation of the conceptual and mathematical foundations of statistical signal processing that will challenge students’ analytical skills and motivate them to develop new applications on their own, or better understand the motivation underlining the existing solutions. Throughout the book, some real-world examples demonstrate how powerful a tool statistical signal processing is in practice across a wide range of applications. Takes an interdisciplinary approach, integrating basic concepts and tools for statistical signal processing Informed by its author’s vast experience as both a practitioner and teacher Offers a hands-on approach to solving problems in statistical signal processing Covers a broad range of applications, including communication systems, machine learning, wavefield and array processing, remote sensing, image filtering and distributed computations Features numerous real-world examples from a wide range of applications showing the mathematical concepts involved in practice Includes MATLAB code of many of the experiments in the book Statistical Signal Processing in Engineering is an indispensable working resource for electrical engineers, especially those working in the information and communication technology (ICT) industry. It is also an ideal text for engineering students at large, applied mathematics post-graduates and advanced undergraduates in electrical engineering, applied statistics, and pure mathematics, studying statistical signal processing.
Book Synopsis Probability, Statistics, and Random Processes for Engineers by : Henry Stark
Download or read book Probability, Statistics, and Random Processes for Engineers written by Henry Stark and published by . This book was released on 2012 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: For courses in Probability and Random Processes. Probability, Statistics, and Random Processes for Engineers, 4e is a comprehensive treatment of probability and random processes that, more than any other available source, combines rigor with accessibility. Beginning with the fundamentals of probability theory and requiring only college-level calculus, the book develops all the tools needed to understand more advanced topics such as random sequences, continuous-time random processes, and statistical signal processing. The book progresses at a leisurely pace, never assuming more knowledge than contained in the material already covered. Rigor is established by developing all results from the basic axioms and carefully defining and discussing such advanced notions as stochastic convergence, stochastic integrals and resolution of stochastic processes.