Statistics, Data Mining, and Machine Learning in Astronomy

Download Statistics, Data Mining, and Machine Learning in Astronomy PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691151687
Total Pages : 550 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Statistics, Data Mining, and Machine Learning in Astronomy by : Željko Ivezić

Download or read book Statistics, Data Mining, and Machine Learning in Astronomy written by Željko Ivezić and published by Princeton University Press. This book was released on 2014-01-12 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers

Advances in Machine Learning and Data Mining for Astronomy

Download Advances in Machine Learning and Data Mining for Astronomy PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439841748
Total Pages : 744 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Advances in Machine Learning and Data Mining for Astronomy by : Michael J. Way

Download or read book Advances in Machine Learning and Data Mining for Astronomy written by Michael J. Way and published by CRC Press. This book was released on 2012-03-29 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines

Introduction to Statistical Machine Learning

Download Introduction to Statistical Machine Learning PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 0128023503
Total Pages : 535 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Statistical Machine Learning by : Masashi Sugiyama

Download or read book Introduction to Statistical Machine Learning written by Masashi Sugiyama and published by Morgan Kaufmann. This book was released on 2015-10-31 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. - Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus - Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning - Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks - Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials

Principles of Data Mining

Download Principles of Data Mining PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262082907
Total Pages : 594 pages
Book Rating : 4.0/5 (829 download)

DOWNLOAD NOW!


Book Synopsis Principles of Data Mining by : David J. Hand

Download or read book Principles of Data Mining written by David J. Hand and published by MIT Press. This book was released on 2001-08-17 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.

Data Mining

Download Data Mining PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 9781558605527
Total Pages : 414 pages
Book Rating : 4.6/5 (55 download)

DOWNLOAD NOW!


Book Synopsis Data Mining by : Ian H. Witten

Download or read book Data Mining written by Ian H. Witten and published by Morgan Kaufmann. This book was released on 2000 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a thorough grounding in machine learning concepts combined with practical advice on applying machine learning tools and techniques in real-world data mining situations. Clearly written and effectively illustrated, this book is ideal for anyone involved at any level in the work of extracting usable knowledge from large collections of data. Complementing the book's instruction is fully functional machine learning software.

Data Mining and Data Visualization

Download Data Mining and Data Visualization PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080459404
Total Pages : 660 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Data Mining and Data Visualization by :

Download or read book Data Mining and Data Visualization written by and published by Elsevier. This book was released on 2005-05-02 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Data Visualization focuses on dealing with large-scale data, a field commonly referred to as data mining. The book is divided into three sections. The first deals with an introduction to statistical aspects of data mining and machine learning and includes applications to text analysis, computer intrusion detection, and hiding of information in digital files. The second section focuses on a variety of statistical methodologies that have proven to be effective in data mining applications. These include clustering, classification, multivariate density estimation, tree-based methods, pattern recognition, outlier detection, genetic algorithms, and dimensionality reduction. The third section focuses on data visualization and covers issues of visualization of high-dimensional data, novel graphical techniques with a focus on human factors, interactive graphics, and data visualization using virtual reality. This book represents a thorough cross section of internationally renowned thinkers who are inventing methods for dealing with a new data paradigm. - Distinguished contributors who are international experts in aspects of data mining - Includes data mining approaches to non-numerical data mining including text data, Internet traffic data, and geographic data - Highly topical discussions reflecting current thinking on contemporary technical issues, e.g. streaming data - Discusses taxonomy of dataset sizes, computational complexity, and scalability usually ignored in most discussions - Thorough discussion of data visualization issues blending statistical, human factors, and computational insights

Practical Machine Learning for Data Analysis Using Python

Download Practical Machine Learning for Data Analysis Using Python PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128213809
Total Pages : 536 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Practical Machine Learning for Data Analysis Using Python by : Abdulhamit Subasi

Download or read book Practical Machine Learning for Data Analysis Using Python written by Abdulhamit Subasi and published by Academic Press. This book was released on 2020-06-05 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features

Data Mining for Scientific and Engineering Applications

Download Data Mining for Scientific and Engineering Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9781402001147
Total Pages : 632 pages
Book Rating : 4.0/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Data Mining for Scientific and Engineering Applications by : R.L. Grossman

Download or read book Data Mining for Scientific and Engineering Applications written by R.L. Grossman and published by Springer Science & Business Media. This book was released on 2001-10-31 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.

Data Mining

Download Data Mining PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 0128043571
Total Pages : 655 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Data Mining by : Ian H. Witten

Download or read book Data Mining written by Ian H. Witten and published by Morgan Kaufmann. This book was released on 2016-10-01 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at https://www.cs.waikato.ac.nz/~ml/weka/book.html. It contains - Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book - Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book - Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. - Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects - Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface - Includes open-access online courses that introduce practical applications of the material in the book

Data Mining

Download Data Mining PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 008047702X
Total Pages : 558 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Data Mining by : Ian H. Witten

Download or read book Data Mining written by Ian H. Witten and published by Elsevier. This book was released on 2005-07-13 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining, Second Edition, describes data mining techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights of this new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; and much more. This text is designed for information systems practitioners, programmers, consultants, developers, information technology managers, specification writers as well as professors and students of graduate-level data mining and machine learning courses. - Algorithmic methods at the heart of successful data mining—including tried and true techniques as well as leading edge methods - Performance improvement techniques that work by transforming the input or output

Handbook of Statistical Analysis and Data Mining Applications

Download Handbook of Statistical Analysis and Data Mining Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0124166458
Total Pages : 824 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Analysis and Data Mining Applications by : Ken Yale

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Numerical Python in Astronomy and Astrophysics

Download Numerical Python in Astronomy and Astrophysics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030703479
Total Pages : 250 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Numerical Python in Astronomy and Astrophysics by : Wolfram Schmidt

Download or read book Numerical Python in Astronomy and Astrophysics written by Wolfram Schmidt and published by Springer Nature. This book was released on 2021-07-14 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a solid foundation in the Python programming language, numerical methods, and data analysis, all embedded within the context of astronomy and astrophysics. It not only enables students to learn programming with the aid of examples from these fields but also provides ample motivation for engagement in independent research. The book opens by outlining the importance of computational methods and programming algorithms in contemporary astronomical and astrophysical research, showing why programming in Python is a good choice for beginners. The performance of basic calculations with Python is then explained with reference to, for example, Kepler’s laws of planetary motion and gravitational and tidal forces. Here, essential background knowledge is provided as necessary. Subsequent chapters are designed to teach the reader to define and use important functions in Python and to utilize numerical methods to solve differential equations and landmark dynamical problems in astrophysics. Finally, the analysis of astronomical data is discussed, with various hands-on examples as well as guidance on astronomical image analysis and applications of artificial neural networks.

Modern Statistical Methods for Astronomy

Download Modern Statistical Methods for Astronomy PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 052176727X
Total Pages : 495 pages
Book Rating : 4.5/5 (217 download)

DOWNLOAD NOW!


Book Synopsis Modern Statistical Methods for Astronomy by : Eric D. Feigelson

Download or read book Modern Statistical Methods for Astronomy written by Eric D. Feigelson and published by Cambridge University Press. This book was released on 2012-07-12 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Statistical Methods for Astronomy: With R Applications.

Scientific Data Mining and Knowledge Discovery

Download Scientific Data Mining and Knowledge Discovery PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642027881
Total Pages : 398 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Scientific Data Mining and Knowledge Discovery by : Mohamed Medhat Gaber

Download or read book Scientific Data Mining and Knowledge Discovery written by Mohamed Medhat Gaber and published by Springer Science & Business Media. This book was released on 2009-09-19 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mohamed Medhat Gaber “It is not my aim to surprise or shock you – but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until – in a visible future – the range of problems they can handle will be coextensive with the range to which the human mind has been applied” by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1–3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.

Data Mining in Time Series Databases

Download Data Mining in Time Series Databases PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 981256540X
Total Pages : 205 pages
Book Rating : 4.8/5 (125 download)

DOWNLOAD NOW!


Book Synopsis Data Mining in Time Series Databases by : Abraham Kandel

Download or read book Data Mining in Time Series Databases written by Abraham Kandel and published by World Scientific. This book was released on 2004 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adding the time dimension to real-world databases produces Time SeriesDatabases (TSDB) and introduces new aspects and difficulties to datamining and knowledge discovery. This book covers the state-of-the-artmethodology for mining time series databases. The novel data miningmethods presented in the book include techniques for efficientsegmentation, indexing, and classification of noisy and dynamic timeseries. A graph-based method for anomaly detection in time series isdescribed and the book also studies the implications of a novel andpotentially useful representation of time series as strings. Theproblem of detecting changes in data mining models that are inducedfrom temporal databases is additionally discussed.

Big Data in Astronomy

Download Big Data in Astronomy PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 012819085X
Total Pages : 440 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Big Data in Astronomy by : Linghe Kong

Download or read book Big Data in Astronomy written by Linghe Kong and published by Elsevier. This book was released on 2020-06-13 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data in Radio Astronomy: Scientific Data Processing for Advanced Radio Telescopes provides the latest research developments in big data methods and techniques for radio astronomy. Providing examples from such projects as the Square Kilometer Array (SKA), the world's largest radio telescope that generates over an Exabyte of data every day, the book offers solutions for coping with the challenges and opportunities presented by the exponential growth of astronomical data. Presenting state-of-the-art results and research, this book is a timely reference for both practitioners and researchers working in radio astronomy, as well as students looking for a basic understanding of big data in astronomy. - Bridges the gap between radio astronomy and computer science - Includes coverage of the observation lifecycle as well as data collection, processing and analysis - Presents state-of-the-art research and techniques in big data related to radio astronomy - Utilizes real-world examples, such as Square Kilometer Array (SKA) and Five-hundred-meter Aperture Spherical radio Telescope (FAST)

Intelligent Astrophysics

Download Intelligent Astrophysics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030658678
Total Pages : 300 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Astrophysics by : Ivan Zelinka

Download or read book Intelligent Astrophysics written by Ivan Zelinka and published by Springer Nature. This book was released on 2021-04-15 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This present book discusses the application of the methods to astrophysical data from different perspectives. In this book, the reader will encounter interesting chapters that discuss data processing and pulsars, the complexity and information content of our universe, the use of tessellation in astronomy, characterization and classification of astronomical phenomena, identification of extragalactic objects, classification of pulsars and many other interesting chapters. The authors of these chapters are experts in their field and have been carefully selected to create this book so that the authors present to the community a representative publication that shows a unique fusion of artificial intelligence and astrophysics.