Statistical Significance Testing for Natural Language Processing

Download Statistical Significance Testing for Natural Language Processing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031021746
Total Pages : 98 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Statistical Significance Testing for Natural Language Processing by : Rotem Dror

Download or read book Statistical Significance Testing for Natural Language Processing written by Rotem Dror and published by Springer Nature. This book was released on 2022-06-01 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven experimental analysis has become the main evaluation tool of Natural Language Processing (NLP) algorithms. In fact, in the last decade, it has become rare to see an NLP paper, particularly one that proposes a new algorithm, that does not include extensive experimental analysis, and the number of involved tasks, datasets, domains, and languages is constantly growing. This emphasis on empirical results highlights the role of statistical significance testing in NLP research: If we, as a community, rely on empirical evaluation to validate our hypotheses and reveal the correct language processing mechanisms, we better be sure that our results are not coincidental. The goal of this book is to discuss the main aspects of statistical significance testing in NLP. Our guiding assumption throughout the book is that the basic question NLP researchers and engineers deal with is whether or not one algorithm can be considered better than another one. This question drives the field forward as it allows the constant progress of developing better technology for language processing challenges. In practice, researchers and engineers would like to draw the right conclusion from a limited set of experiments, and this conclusion should hold for other experiments with datasets they do not have at their disposal or that they cannot perform due to limited time and resources. The book hence discusses the opportunities and challenges in using statistical significance testing in NLP, from the point of view of experimental comparison between two algorithms. We cover topics such as choosing an appropriate significance test for the major NLP tasks, dealing with the unique aspects of significance testing for non-convex deep neural networks, accounting for a large number of comparisons between two NLP algorithms in a statistically valid manner (multiple hypothesis testing), and, finally, the unique challenges yielded by the nature of the data and practices of the field.

Statistical Significance Testing for Natural Language Processing

Download Statistical Significance Testing for Natural Language Processing PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1681737965
Total Pages : 118 pages
Book Rating : 4.6/5 (817 download)

DOWNLOAD NOW!


Book Synopsis Statistical Significance Testing for Natural Language Processing by : Rotem Dror

Download or read book Statistical Significance Testing for Natural Language Processing written by Rotem Dror and published by Morgan & Claypool Publishers. This book was released on 2020-04-03 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven experimental analysis has become the main evaluation tool of Natural Language Processing (NLP) algorithms. In fact, in the last decade, it has become rare to see an NLP paper, particularly one that proposes a new algorithm, that does not include extensive experimental analysis, and the number of involved tasks, datasets, domains, and languages is constantly growing. This emphasis on empirical results highlights the role of statistical significance testing in NLP research: If we, as a community, rely on empirical evaluation to validate our hypotheses and reveal the correct language processing mechanisms, we better be sure that our results are not coincidental. The goal of this book is to discuss the main aspects of statistical significance testing in NLP. Our guiding assumption throughout the book is that the basic question NLP researchers and engineers deal with is whether or not one algorithm can be considered better than another one. This question drives the field forward as it allows the constant progress of developing better technology for language processing challenges. In practice, researchers and engineers would like to draw the right conclusion from a limited set of experiments, and this conclusion should hold for other experiments with datasets they do not have at their disposal or that they cannot perform due to limited time and resources. The book hence discusses the opportunities and challenges in using statistical significance testing in NLP, from the point of view of experimental comparison between two algorithms. We cover topics such as choosing an appropriate significance test for the major NLP tasks, dealing with the unique aspects of significance testing for non-convex deep neural networks, accounting for a large number of comparisons between two NLP algorithms in a statistically valid manner (multiple hypothesis testing), and, finally, the unique challenges yielded by the nature of the data and practices of the field.

Speech & Language Processing

Download Speech & Language Processing PDF Online Free

Author :
Publisher : Pearson Education India
ISBN 13 : 9788131716724
Total Pages : 912 pages
Book Rating : 4.7/5 (167 download)

DOWNLOAD NOW!


Book Synopsis Speech & Language Processing by : Dan Jurafsky

Download or read book Speech & Language Processing written by Dan Jurafsky and published by Pearson Education India. This book was released on 2000-09 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Natural Language Processing

Download Introduction to Natural Language Processing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262042843
Total Pages : 535 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Natural Language Processing by : Jacob Eisenstein

Download or read book Introduction to Natural Language Processing written by Jacob Eisenstein and published by MIT Press. This book was released on 2019-10-01 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.

Foundations of Statistical Natural Language Processing

Download Foundations of Statistical Natural Language Processing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262303795
Total Pages : 719 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Statistical Natural Language Processing by : Christopher Manning

Download or read book Foundations of Statistical Natural Language Processing written by Christopher Manning and published by MIT Press. This book was released on 1999-05-28 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Explainable Natural Language Processing

Download Explainable Natural Language Processing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031021800
Total Pages : 107 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Explainable Natural Language Processing by : Anders Søgaard

Download or read book Explainable Natural Language Processing written by Anders Søgaard and published by Springer Nature. This book was released on 2022-06-01 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a taxonomy framework and survey of methods relevant to explaining the decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly grow. The book is intended to be both readable by first-year M.Sc. students and interesting to an expert audience. The book opens by motivating a focus on providing a consistent taxonomy, pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a taxonomy or framework for thinking about how approaches to explainable NLP relate to one another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods, as well as how to best evaluate them. Finally, the book closes by providing a list of resources for further research on explainability.

Embeddings in Natural Language Processing

Download Embeddings in Natural Language Processing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031021770
Total Pages : 157 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Embeddings in Natural Language Processing by : Mohammad Taher Pilehvar

Download or read book Embeddings in Natural Language Processing written by Mohammad Taher Pilehvar and published by Springer Nature. This book was released on 2022-05-31 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.

Natural Language Processing for Social Media

Download Natural Language Processing for Social Media PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1681738120
Total Pages : 221 pages
Book Rating : 4.6/5 (817 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing for Social Media by : Anna Atefeh Farzindar

Download or read book Natural Language Processing for Social Media written by Anna Atefeh Farzindar and published by Morgan & Claypool Publishers. This book was released on 2020-04-10 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts, and it shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, and business intelligence. The book further covers the existing evaluation metrics for NLP and social media applications and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks), the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC), or the Conference and Labs of the Evaluation Forum (CLEF). In this third edition of the book, the authors added information about recent progress in NLP for social media applications, including more about the modern techniques provided by deep neural networks (DNNs) for modeling language and analyzing social media data.

Natural Language Processing for Social Media, Third Edition

Download Natural Language Processing for Social Media, Third Edition PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031021754
Total Pages : 193 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing for Social Media, Third Edition by : Anna Atefeh Farzindar

Download or read book Natural Language Processing for Social Media, Third Edition written by Anna Atefeh Farzindar and published by Springer Nature. This book was released on 2022-05-31 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts, and it shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, and business intelligence. The book further covers the existing evaluation metrics for NLP and social media applications and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks), the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC), or the Conference and Labs of the Evaluation Forum (CLEF). In this third edition of the book, the authors added information about recent progress in NLP for social media applications, including more about the modern techniques provided by deep neural networks (DNNs) for modeling language and analyzing social media data.

Validity, Reliability, and Significance

Download Validity, Reliability, and Significance PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031570650
Total Pages : 179 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Validity, Reliability, and Significance by : Stefan Riezler

Download or read book Validity, Reliability, and Significance written by Stefan Riezler and published by Springer Nature. This book was released on with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Foundations of Statistical Natural Language Processing

Download Foundations of Statistical Natural Language Processing PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262133609
Total Pages : 722 pages
Book Rating : 4.1/5 (336 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Statistical Natural Language Processing by : Christopher Manning

Download or read book Foundations of Statistical Natural Language Processing written by Christopher Manning and published by MIT Press. This book was released on 1999-05-28 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Evaluating Natural Language Processing Systems

Download Evaluating Natural Language Processing Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540613091
Total Pages : 256 pages
Book Rating : 4.6/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Evaluating Natural Language Processing Systems by : Karen Sparck Jones

Download or read book Evaluating Natural Language Processing Systems written by Karen Sparck Jones and published by Springer Science & Business Media. This book was released on 1995 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the patterns of connections between brain structures. It reviews progress on the analysis of neuroanatomical connection data and presents six different approaches to data analysis. The results of their application to data from cat and monkey cortex are explored. This volume sheds light on the organization of the brain that is specified by its wiring.

Natural Language Processing and Information Systems

Download Natural Language Processing and Information Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030513106
Total Pages : 290 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing and Information Systems by : Elisabeth Métais

Download or read book Natural Language Processing and Information Systems written by Elisabeth Métais and published by Springer Nature. This book was released on 2020-06-17 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 25th International Conference on Applications of Natural Language to Information Systems, NLDB 2020, held in Saarbrücken, Germany, in June 2020.* The 15 full papers and 10 short papers were carefully reviewed and selected from 68 submissions. The papers are organized in the following topical sections: semantic analysis; question answering and answer generation; classification; sentiment analysis; personality, affect and emotion; retrieval, conversational agents and multimodal analysis. *The conference was held virtually due to the COVID-19 pandemic.

Pretrained Transformers for Text Ranking

Download Pretrained Transformers for Text Ranking PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031021819
Total Pages : 307 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Pretrained Transformers for Text Ranking by : Jimmy Lin

Download or read book Pretrained Transformers for Text Ranking written by Jimmy Lin and published by Springer Nature. This book was released on 2022-06-01 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing (NLP) applications.This book provides an overview of text ranking with neural network architectures known as transformers, of which BERT (Bidirectional Encoder Representations from Transformers) is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in NLP, information retrieval (IR), and beyond. This book provides a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. It covers a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. Two themes pervade the book: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this book also attempts to prognosticate where the field is heading.

Automated Essay Scoring

Download Automated Essay Scoring PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031021827
Total Pages : 294 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Automated Essay Scoring by : Beata Beigman Klebanov

Download or read book Automated Essay Scoring written by Beata Beigman Klebanov and published by Springer Nature. This book was released on 2022-05-31 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the state of the art of automated essay scoring, its challenges and its potential. One of the earliest applications of artificial intelligence to language data (along with machine translation and speech recognition), automated essay scoring has evolved to become both a revenue-generating industry and a vast field of research, with many subfields and connections to other NLP tasks. In this book, we review the developments in this field against the backdrop of Elias Page's seminal 1966 paper titled "The Imminence of Grading Essays by Computer." Part 1 establishes what automated essay scoring is about, why it exists, where the technology stands, and what are some of the main issues. In Part 2, the book presents guided exercises to illustrate how one would go about building and evaluating a simple automated scoring system, while Part 3 offers readers a survey of the literature on different types of scoring models, the aspects of essay quality studied in prior research, and the implementation and evaluation of a scoring engine. Part 4 offers a broader view of the field inclusive of some neighboring areas, and Part \ref{part5} closes with summary and discussion. This book grew out of a week-long course on automated evaluation of language production at the North American Summer School for Logic, Language, and Information (NASSLLI), attended by advanced undergraduates and early-stage graduate students from a variety of disciplines. Teachers of natural language processing, in particular, will find that the book offers a useful foundation for a supplemental module on automated scoring. Professionals and students in linguistics, applied linguistics, educational technology, and other related disciplines will also find the material here useful.

Finite-State Text Processing

Download Finite-State Text Processing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031021797
Total Pages : 140 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Finite-State Text Processing by : Kyle Gorman

Download or read book Finite-State Text Processing written by Kyle Gorman and published by Springer Nature. This book was released on 2022-06-01 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Weighted finite-state transducers (WFSTs) are commonly used by engineers and computational linguists for processing and generating speech and text. This book first provides a detailed introduction to this formalism. It then introduces Pynini, a Python library for compiling finite-state grammars and for combining, optimizing, applying, and searching finite-state transducers. This book illustrates this library's conventions and use with a series of case studies. These include the compilation and application of context-dependent rewrite rules, the construction of morphological analyzers and generators, and text generation and processing applications.

Conversational AI

Download Conversational AI PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031021762
Total Pages : 234 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Conversational AI by : Michael McTear

Download or read book Conversational AI written by Michael McTear and published by Springer Nature. This book was released on 2022-05-31 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to Conversational AI. While the idea of interacting with a computer using voice or text goes back a long way, it is only in recent years that this idea has become a reality with the emergence of digital personal assistants, smart speakers, and chatbots. Advances in AI, particularly in deep learning, along with the availability of massive computing power and vast amounts of data, have led to a new generation of dialogue systems and conversational interfaces. Current research in Conversational AI focuses mainly on the application of machine learning and statistical data-driven approaches to the development of dialogue systems. However, it is important to be aware of previous achievements in dialogue technology and to consider to what extent they might be relevant to current research and development. Three main approaches to the development of dialogue systems are reviewed: rule-based systems that are handcrafted using best practice guidelines; statistical data-driven systems based on machine learning; and neural dialogue systems based on end-to-end learning. Evaluating the performance and usability of dialogue systems has become an important topic in its own right, and a variety of evaluation metrics and frameworks are described. Finally, a number of challenges for future research are considered, including: multimodality in dialogue systems, visual dialogue; data efficient dialogue model learning; using knowledge graphs; discourse and dialogue phenomena; hybrid approaches to dialogue systems development; dialogue with social robots and in the Internet of Things; and social and ethical issues.