Tensor Regression

Download Tensor Regression PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680838862
Total Pages : pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Tensor Regression by : Jiani Liu

Download or read book Tensor Regression written by Jiani Liu and published by . This book was released on 2021-09-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis.

High-Performance Tensor Computations in Scientific Computing and Data Science

Download High-Performance Tensor Computations in Scientific Computing and Data Science PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832504256
Total Pages : 192 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis High-Performance Tensor Computations in Scientific Computing and Data Science by : Edoardo Angelo Di Napoli

Download or read book High-Performance Tensor Computations in Scientific Computing and Data Science written by Edoardo Angelo Di Napoli and published by Frontiers Media SA. This book was released on 2022-11-08 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Methods for Computational and Statistical Estimation with Applications

Download Methods for Computational and Statistical Estimation with Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 380 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Methods for Computational and Statistical Estimation with Applications by : Tong Zhang

Download or read book Methods for Computational and Statistical Estimation with Applications written by Tong Zhang and published by . This book was released on 1998 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Tensor Methods in Statistics

Download Tensor Methods in Statistics PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486832694
Total Pages : 308 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Tensor Methods in Statistics by : Peter McCullagh

Download or read book Tensor Methods in Statistics written by Peter McCullagh and published by Courier Dover Publications. This book was released on 2018-07-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: A pioneering monograph on tensor methods applied to distributional problems arising in statistics, this work begins with the study of multivariate moments and cumulants. An invaluable reference for graduate students and professional statisticians. 1987 edition.

Modern Statistical Methods for Astronomy

Download Modern Statistical Methods for Astronomy PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 052176727X
Total Pages : 495 pages
Book Rating : 4.5/5 (217 download)

DOWNLOAD NOW!


Book Synopsis Modern Statistical Methods for Astronomy by : Eric D. Feigelson

Download or read book Modern Statistical Methods for Astronomy written by Eric D. Feigelson and published by Cambridge University Press. This book was released on 2012-07-12 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Statistical Methods for Astronomy: With R Applications.

Matrix and Tensor Decompositions in Signal Processing, Volume 2

Download Matrix and Tensor Decompositions in Signal Processing, Volume 2 PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1786301555
Total Pages : 386 pages
Book Rating : 4.7/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Matrix and Tensor Decompositions in Signal Processing, Volume 2 by : Gérard Favier

Download or read book Matrix and Tensor Decompositions in Signal Processing, Volume 2 written by Gérard Favier and published by John Wiley & Sons. This book was released on 2021-08-31 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided.

Handbook of Graphical Models

Download Handbook of Graphical Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429874235
Total Pages : 612 pages
Book Rating : 4.4/5 (298 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Graphical Models by : Marloes Maathuis

Download or read book Handbook of Graphical Models written by Marloes Maathuis and published by CRC Press. This book was released on 2018-11-12 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.

Tensor Computation for Data Analysis

Download Tensor Computation for Data Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030743861
Total Pages : 347 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Tensor Computation for Data Analysis by : Yipeng Liu

Download or read book Tensor Computation for Data Analysis written by Yipeng Liu and published by Springer Nature. This book was released on 2021-08-31 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.

New Frontiers in Bayesian Statistics

Download New Frontiers in Bayesian Statistics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303116427X
Total Pages : 122 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis New Frontiers in Bayesian Statistics by : Raffaele Argiento

Download or read book New Frontiers in Bayesian Statistics written by Raffaele Argiento and published by Springer Nature. This book was released on 2022-11-26 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a selection of peer-reviewed contributions to the fifth Bayesian Young Statisticians Meeting, BaYSM 2021, held virtually due to the COVID-19 pandemic on 1-3 September 2021. Despite all the challenges of an online conference, the meeting provided a valuable opportunity for early career researchers, including MSc students, PhD students, and postdocs to connect with the broader Bayesian community. The proceedings highlight many different topics in Bayesian statistics, presenting promising methodological approaches to address important challenges in a variety of applications. The book is intended for a broad audience of people interested in statistics, and provides a series of stimulating contributions on theoretical, methodological, and computational aspects of Bayesian statistics.

High-Dimensional Probability

Download High-Dimensional Probability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108415199
Total Pages : 299 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Probability by : Roman Vershynin

Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Scientific and Technical Aerospace Reports

Download Scientific and Technical Aerospace Reports PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 892 pages
Book Rating : 4.:/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Scientific and Technical Aerospace Reports by :

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Springer Handbook of Engineering Statistics

Download Springer Handbook of Engineering Statistics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1447175034
Total Pages : 1136 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Springer Handbook of Engineering Statistics by : Hoang Pham

Download or read book Springer Handbook of Engineering Statistics written by Hoang Pham and published by Springer Nature. This book was released on 2023-04-20 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s global and highly competitive environment, continuous improvement in the processes and products of any field of engineering is essential for survival. This book gathers together the full range of statistical techniques required by engineers from all fields. It will assist them to gain sensible statistical feedback on how their processes or products are functioning and to give them realistic predictions of how these could be improved. The handbook will be essential reading for all engineers and engineering-connected managers who are serious about keeping their methods and products at the cutting edge of quality and competitiveness.

Handbook of Regression Methods

Download Handbook of Regression Methods PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351650742
Total Pages : 507 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Regression Methods by : Derek Scott Young

Download or read book Handbook of Regression Methods written by Derek Scott Young and published by CRC Press. This book was released on 2018-10-03 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Regression Methods concisely covers numerous traditional, contemporary, and nonstandard regression methods. The handbook provides a broad overview of regression models, diagnostic procedures, and inference procedures, with emphasis on how these methods are applied. The organization of the handbook benefits both practitioners and researchers, who seek either to obtain a quick understanding of regression methods for specialized problems or to expand their own breadth of knowledge of regression topics. This handbook covers classic material about simple linear regression and multiple linear regression, including assumptions, effective visualizations, and inference procedures. It presents an overview of advanced diagnostic tests, remedial strategies, and model selection procedures. Finally, many chapters are devoted to a diverse range of topics, including censored regression, nonlinear regression, generalized linear models, and semiparametric regression. Features Presents a concise overview of a wide range of regression topics not usually covered in a single text Includes over 80 examples using nearly 70 real datasets, with results obtained using R Offers a Shiny app containing all examples, thus allowing access to the source code and the ability to interact with the analyses

High-Dimensional Covariance Estimation

Download High-Dimensional Covariance Estimation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118034295
Total Pages : 204 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Covariance Estimation by : Mohsen Pourahmadi

Download or read book High-Dimensional Covariance Estimation written by Mohsen Pourahmadi and published by John Wiley & Sons. This book was released on 2013-06-24 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning. Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task. High-Dimensional Covariance Estimation features chapters on: Data, Sparsity, and Regularization Regularizing the Eigenstructure Banding, Tapering, and Thresholding Covariance Matrices Sparse Gaussian Graphical Models Multivariate Regression The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008

Download Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008 PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 354085987X
Total Pages : 1136 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008 by : Dimitris N. Metaxas

Download or read book Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008 written by Dimitris N. Metaxas and published by Springer Science & Business Media. This book was released on 2008 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation The two-volume set LNCS 5241 and LNCS 5242 constitute the refereed proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2008, held in New York, NY, USA, in September 2008.The program committee carefully selected 258 revised papers from numerous submissions for presentation in two volumes, based on rigorous peer reviews. The first volume includes 127 papers related to medical image computing, segmentation, shape and statistics analysis, modeling, motion tracking and compensation, as well as registration. The second volume contains 131 contributions related to robotics and interventions, statistical analysis, segmentation, intervention, modeling, and registration.

Uncertainty Modeling for Engineering Applications

Download Uncertainty Modeling for Engineering Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030048705
Total Pages : 186 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Uncertainty Modeling for Engineering Applications by : Flavio Canavero

Download or read book Uncertainty Modeling for Engineering Applications written by Flavio Canavero and published by Springer. This book was released on 2018-12-29 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of state-of-the-art uncertainty quantification (UQ) methodologies and applications, and covers a wide range of current research, future challenges and applications in various domains, such as aerospace and mechanical applications, structure health and seismic hazard, electromagnetic energy (its impact on systems and humans) and global environmental state change. Written by leading international experts from different fields, the book demonstrates the unifying property of UQ theme that can be profitably adopted to solve problems of different domains. The collection in one place of different methodologies for different applications has the great value of stimulating the cross-fertilization and alleviate the language barrier among areas sharing a common background of mathematical modeling for problem solution. The book is designed for researchers, professionals and graduate students interested in quantitatively assessing the effects of uncertainties in their fields of application. The contents build upon the workshop “Uncertainty Modeling for Engineering Applications” (UMEMA 2017), held in Torino, Italy in November 2017.

Statistical Foundations of Data Science

Download Statistical Foundations of Data Science PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429527616
Total Pages : 974 pages
Book Rating : 4.4/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Statistical Foundations of Data Science by : Jianqing Fan

Download or read book Statistical Foundations of Data Science written by Jianqing Fan and published by CRC Press. This book was released on 2020-09-21 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.