Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Statistical Inference In Science
Download Statistical Inference In Science full books in PDF, epub, and Kindle. Read online Statistical Inference In Science ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Statistical Inference in Science by : D.A. Sprott
Download or read book Statistical Inference in Science written by D.A. Sprott and published by Springer Science & Business Media. This book was released on 2000-06-22 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: A treatment of the problems of inference associated with experiments in science, with the emphasis on techniques for dividing the sample information into various parts, such that the diverse problems of inference that arise from repeatable experiments may be addressed. A particularly valuable feature is the large number of practical examples, many of which use data taken from experiments published in various scientific journals. This book evolved from the authors own courses on statistical inference, and assumes an introductory course in probability, including the calculation and manipulation of probability functions and density functions, transformation of variables and the use of Jacobians. While this is a suitable text book for advanced undergraduate, Masters, and Ph.D. statistics students, it may also be used as a reference book.
Book Synopsis Statistical Inference for Engineers and Data Scientists by : Pierre Moulin
Download or read book Statistical Inference for Engineers and Data Scientists written by Pierre Moulin and published by Cambridge University Press. This book was released on 2019 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: A mathematically accessible textbook introducing all the tools needed to address modern inference problems in engineering and data science.
Book Synopsis Statistical Inference by : Michael W. Oakes
Download or read book Statistical Inference written by Michael W. Oakes and published by . This book was released on 1990 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo
Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Book Synopsis Parametric Statistical Inference by : James K. Lindsey
Download or read book Parametric Statistical Inference written by James K. Lindsey and published by Oxford University Press. This book was released on 1996 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two unifying components of statistics are the likelihood function and the exponential family. These are brought together for the first time as the central themes in this book on statistical inference, written for advanced undergraduate and graduate students in mathematical statistics.
Book Synopsis Computer Age Statistical Inference by : Bradley Efron
Download or read book Computer Age Statistical Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2016-07-21 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Book Synopsis Computer Age Statistical Inference, Student Edition by : Bradley Efron
Download or read book Computer Age Statistical Inference, Student Edition written by Bradley Efron and published by Cambridge University Press. This book was released on 2021-06-17 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.
Book Synopsis An Introduction to Statistical Inference and Its Applications with R by : Michael W. Trosset
Download or read book An Introduction to Statistical Inference and Its Applications with R written by Michael W. Trosset and published by CRC Press. This book was released on 2009-06-23 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures
Book Synopsis Statistical Inference by : George Casella
Download or read book Statistical Inference written by George Casella and published by CRC Press. This book was released on 2024-05-23 with total page 1746 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic textbook builds theoretical statistics from the first principles of probability theory. Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and natural extensions, and consequences, of previous concepts. It covers all topics from a standard inference course including: distributions, random variables, data reduction, point estimation, hypothesis testing, and interval estimation. Features The classic graduate-level textbook on statistical inference Develops elements of statistical theory from first principles of probability Written in a lucid style accessible to anyone with some background in calculus Covers all key topics of a standard course in inference Hundreds of examples throughout to aid understanding Each chapter includes an extensive set of graduated exercises Statistical Inference, Second Edition is primarily aimed at graduate students of statistics, but can be used by advanced undergraduate students majoring in statistics who have a solid mathematics background. It also stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures, while less focused on formal optimality considerations. This is a reprint of the second edition originally published by Cengage Learning, Inc. in 2001.
Book Synopsis Statistical Inference by : Helio S. Migon
Download or read book Statistical Inference written by Helio S. Migon and published by CRC Press. This book was released on 2014-09-03 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Balanced Treatment of Bayesian and Frequentist Inference Statistical Inference: An Integrated Approach, Second Edition presents an account of the Bayesian and frequentist approaches to statistical inference. Now with an additional author, this second edition places a more balanced emphasis on both perspectives than the first edition. New to the Second Edition New material on empirical Bayes and penalized likelihoods and their impact on regression models Expanded material on hypothesis testing, method of moments, bias correction, and hierarchical models More examples and exercises More comparison between the approaches, including their similarities and differences Designed for advanced undergraduate and graduate courses, the text thoroughly covers statistical inference without delving too deep into technical details. It compares the Bayesian and frequentist schools of thought and explores procedures that lie on the border between the two. Many examples illustrate the methods and models, and exercises are included at the end of each chapter.
Book Synopsis All of Statistics by : Larry Wasserman
Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Book Synopsis Introduction to the Theory of Statistical Inference by : Hannelore Liero
Download or read book Introduction to the Theory of Statistical Inference written by Hannelore Liero and published by CRC Press. This book was released on 2016-04-19 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the authors' lecture notes, this text presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles. Unlike related textbooks, it combines the theoretical basis of statistical inference with a useful applied toolbox that includes linear models. Suitable for a second semester undergraduate course on statistical inference, the text offers proofs to support the mathematics and does not require any use of measure theory. It illustrates core concepts using cartoons and provides solutions to all examples and problems.
Book Synopsis Statistical Modeling and Inference for Social Science by : Sean Gailmard
Download or read book Statistical Modeling and Inference for Social Science written by Sean Gailmard and published by Cambridge University Press. This book was released on 2014-06-09 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written specifically for graduate students and practitioners beginning social science research, Statistical Modeling and Inference for Social Science covers the essential statistical tools, models and theories that make up the social scientist's toolkit. Assuming no prior knowledge of statistics, this textbook introduces students to probability theory, statistical inference and statistical modeling, and emphasizes the connection between statistical procedures and social science theory. Sean Gailmard develops core statistical theory as a set of tools to model and assess relationships between variables - the primary aim of social scientists - and demonstrates the ways in which social scientists express and test substantive theoretical arguments in various models. Chapter exercises guide students in applying concepts to data, extending their grasp of core theoretical concepts. Students will also gain the ability to create, read and critique statistical applications in their fields of interest.
Book Synopsis Statistical and Inductive Inference by Minimum Message Length by : C.S. Wallace
Download or read book Statistical and Inductive Inference by Minimum Message Length written by C.S. Wallace and published by Springer Science & Business Media. This book was released on 2005-05-26 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.
Book Synopsis Statistical Inference Via Convex Optimization by : Anatoli Juditsky
Download or read book Statistical Inference Via Convex Optimization written by Anatoli Juditsky and published by Princeton University Press. This book was released on 2020-04-07 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.
Book Synopsis Statistical Inference by : Paul H. Garthwaite
Download or read book Statistical Inference written by Paul H. Garthwaite and published by OUP Oxford. This book was released on 2002 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical inference is the foundation on which much of statistical practice is built. The book covers the topic at a level suitable for students and professionals who need to understand these foundations.
Book Synopsis Probability and Statistical Inference by : Miltiadis C. Mavrakakis
Download or read book Probability and Statistical Inference written by Miltiadis C. Mavrakakis and published by CRC Press. This book was released on 2021-03-28 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability and Statistical Inference: From Basic Principles to Advanced Models covers aspects of probability, distribution theory, and inference that are fundamental to a proper understanding of data analysis and statistical modelling. It presents these topics in an accessible manner without sacrificing mathematical rigour, bridging the gap between the many excellent introductory books and the more advanced, graduate-level texts. The book introduces and explores techniques that are relevant to modern practitioners, while being respectful to the history of statistical inference. It seeks to provide a thorough grounding in both the theory and application of statistics, with even the more abstract parts placed in the context of a practical setting. Features: •Complete introduction to mathematical probability, random variables, and distribution theory. •Concise but broad account of statistical modelling, covering topics such as generalised linear models, survival analysis, time series, and random processes. •Extensive discussion of the key concepts in classical statistics (point estimation, interval estimation, hypothesis testing) and the main techniques in likelihood-based inference. •Detailed introduction to Bayesian statistics and associated topics. •Practical illustration of some of the main computational methods used in modern statistical inference (simulation, boostrap, MCMC). This book is for students who have already completed a first course in probability and statistics, and now wish to deepen and broaden their understanding of the subject. It can serve as a foundation for advanced undergraduate or postgraduate courses. Our aim is to challenge and excite the more mathematically able students, while providing explanations of statistical concepts that are more detailed and approachable than those in advanced texts. This book is also useful for data scientists, researchers, and other applied practitioners who want to understand the theory behind the statistical methods used in their fields.