Spectral Theory of Ordinary Differential Operators

Download Spectral Theory of Ordinary Differential Operators PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540479120
Total Pages : 310 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory of Ordinary Differential Operators by : Joachim Weidmann

Download or read book Spectral Theory of Ordinary Differential Operators written by Joachim Weidmann and published by Springer. This book was released on 2006-11-15 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including the spectral theory one partical Schrödinger and Dirac operators with spherically symmetric potentials. The methods of proof are functionally analytic wherever possible.

Spectral Analysis of Differential Operators

Download Spectral Analysis of Differential Operators PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812703454
Total Pages : 466 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Spectral Analysis of Differential Operators by : Fedor S. Rofe-Beketov

Download or read book Spectral Analysis of Differential Operators written by Fedor S. Rofe-Beketov and published by World Scientific. This book was released on 2005 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first monograph devoted to the Sturm oscillatory theory for infinite systems of differential equations and its relations with the spectral theory. It aims to study a theory of self-adjoint problems for such systems, based on an elegant method of binary relations. Another topic investigated in the book is the behavior of discrete eigenvalues which appear in spectral gaps of the Hill operator and almost periodic SchrAdinger operators due to local perturbations of the potential (e.g., modeling impurities in crystals). The book is based on results that have not been presented in other monographs. The only prerequisites needed to read it are basics of ordinary differential equations and operator theory. It should be accessible to graduate students, though its main topics are of interest to research mathematicians working in functional analysis, differential equations and mathematical physics, as well as to physicists interested in spectral theory of differential operators."

Spectral Theory and Differential Operators

Download Spectral Theory and Differential Operators PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0198812051
Total Pages : 610 pages
Book Rating : 4.1/5 (988 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory and Differential Operators by : David Eric Edmunds

Download or read book Spectral Theory and Differential Operators written by David Eric Edmunds and published by Oxford University Press. This book was released on 2018 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.

Introduction to Spectral Theory

Download Introduction to Spectral Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821886632
Total Pages : 544 pages
Book Rating : 4.8/5 (866 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Spectral Theory by : Boris Moiseevich Levitan

Download or read book Introduction to Spectral Theory written by Boris Moiseevich Levitan and published by American Mathematical Soc.. This book was released on 1975 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Spectral Geometry of Partial Differential Operators

Download Spectral Geometry of Partial Differential Operators PDF Online Free

Author :
Publisher : Chapman & Hall/CRC
ISBN 13 : 9781138360716
Total Pages : 0 pages
Book Rating : 4.3/5 (67 download)

DOWNLOAD NOW!


Book Synopsis Spectral Geometry of Partial Differential Operators by : Michael Ruzhansky

Download or read book Spectral Geometry of Partial Differential Operators written by Michael Ruzhansky and published by Chapman & Hall/CRC. This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Access; Differential; Durvudkhan; Geometry; Makhmud; Michael; OA; Open; Operators; Partial; Ruzhansky; Sadybekov; Spectral; Suragan.

Spectral Theory and Differential Operators

Download Spectral Theory and Differential Operators PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521587105
Total Pages : 198 pages
Book Rating : 4.5/5 (871 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory and Differential Operators by : E. Brian Davies

Download or read book Spectral Theory and Differential Operators written by E. Brian Davies and published by Cambridge University Press. This book was released on 1995 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book could be used either for self-study or as a course text, and aims to lead the reader to the more advanced literature on partial differential operators.

An Introduction to Spectral Theory

Download An Introduction to Spectral Theory PDF Online Free

Author :
Publisher : R.T. Edwards, Inc.
ISBN 13 : 9781930217096
Total Pages : 212 pages
Book Rating : 4.2/5 (17 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Spectral Theory by : Andrei Giniatoulline

Download or read book An Introduction to Spectral Theory written by Andrei Giniatoulline and published by R.T. Edwards, Inc.. This book was released on 2005 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: A brief and accessible introduction to the spectral theory of linear second order elliptic differential operators. By introducing vital topics of abstract functional analysis where necessary, and using clear and simple proofs, the book develops an elegant presentation of the theory while integrating applications of basic real world problems involving the Laplacian. Suitable for use as a self-contained introduction for beginners or as a one-semester student text; contains some 25 examples and 60 exercises, most with detailed hints.

Spectral Theory of Differential Operators

Download Spectral Theory of Differential Operators PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080871666
Total Pages : 401 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory of Differential Operators by : I.W. Knowles

Download or read book Spectral Theory of Differential Operators written by I.W. Knowles and published by Elsevier. This book was released on 1981-01-01 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral Theory of Differential Operators

Integral Equations: A Practical Treatment, from Spectral Theory to Applications

Download Integral Equations: A Practical Treatment, from Spectral Theory to Applications PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521337427
Total Pages : 388 pages
Book Rating : 4.3/5 (374 download)

DOWNLOAD NOW!


Book Synopsis Integral Equations: A Practical Treatment, from Spectral Theory to Applications by : David Porter

Download or read book Integral Equations: A Practical Treatment, from Spectral Theory to Applications written by David Porter and published by Cambridge University Press. This book was released on 1990-09-28 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a rigorous and practical treatment of integral equations. These are significant because they occur in many problems in mathematics, physics and engineering and they offer a powerful (sometimes the only) technique for solving these problems. The book aims to tackle the solution of integral equations using a blend of abstract 'structural' results and more direct, down-to-earth mathematics. The interplay between these two approaches is a central feature of the text and it allows a thorough account to be given of many of the types of integral equation which arise in application areas. Since it is not always possible to find explicit solutions of the problems posed, much attention is devoted to obtaining qualitative information and approximations to the solutions, with the associated error estimates. This treatment is intended for final year mathematics undergraduates, postgraduates and research workers in application areas such as numerical analysis and fluid mechanics.

Finite Difference Methods for Ordinary and Partial Differential Equations

Download Finite Difference Methods for Ordinary and Partial Differential Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898717839
Total Pages : 356 pages
Book Rating : 4.7/5 (178 download)

DOWNLOAD NOW!


Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Heat Kernels and Spectral Theory

Download Heat Kernels and Spectral Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521409971
Total Pages : 212 pages
Book Rating : 4.4/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Heat Kernels and Spectral Theory by : E. B. Davies

Download or read book Heat Kernels and Spectral Theory written by E. B. Davies and published by Cambridge University Press. This book was released on 1989 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat Kernels and Spectral Theory investigates the theory of second-order elliptic operators.

Ordinary Differential Equations and Dynamical Systems

Download Ordinary Differential Equations and Dynamical Systems PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 147047641X
Total Pages : 370 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations and Dynamical Systems by : Gerald Teschl

Download or read book Ordinary Differential Equations and Dynamical Systems written by Gerald Teschl and published by American Mathematical Society. This book was released on 2024-01-12 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Perturbation theory for linear operators

Download Perturbation theory for linear operators PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662126788
Total Pages : 610 pages
Book Rating : 4.6/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Perturbation theory for linear operators by : Tosio Kato

Download or read book Perturbation theory for linear operators written by Tosio Kato and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Time-Variant Systems and Interpolation

Download Time-Variant Systems and Interpolation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783764327385
Total Pages : 312 pages
Book Rating : 4.3/5 (273 download)

DOWNLOAD NOW!


Book Synopsis Time-Variant Systems and Interpolation by : Israel Gohberg

Download or read book Time-Variant Systems and Interpolation written by Israel Gohberg and published by Springer Science & Business Media. This book was released on 1992 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Six papers deal with interrelated problems of modern operator theory, complex analysis, and system theory at a level accessible to advanced mathematicians and engineers. They provide a cross-section of recent advances in the understanding of the theory of time-varying systems and time-varying of analogues of interpolation problems. No index. Annotation copyrighted by Book News, Inc., Portland, OR

Introduction to spectral theory: selfadjoint ordinary differential operators

Download Introduction to spectral theory: selfadjoint ordinary differential operators PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082181589X
Total Pages : 542 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Introduction to spectral theory: selfadjoint ordinary differential operators by : Boris Moiseevich Levitan

Download or read book Introduction to spectral theory: selfadjoint ordinary differential operators written by Boris Moiseevich Levitan and published by American Mathematical Soc.. This book was released on 1975 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a monograph that is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. This book concerns with nth order operators that can serve as simply an introduction to this domain. It includes a chapter that discusses this theory.

Linear Second Order Elliptic Operators

Download Linear Second Order Elliptic Operators PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 : 9814440264
Total Pages : 356 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Linear Second Order Elliptic Operators by : Julian Lopez-gomez

Download or read book Linear Second Order Elliptic Operators written by Julian Lopez-gomez and published by World Scientific Publishing Company. This book was released on 2013-04-24 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of the book is to provide a comprehensive and self-contained proof of the, relatively recent, theorem of characterization of the strong maximum principle due to Molina-Meyer and the author, published in Diff. Int. Eqns. in 1994, which was later refined by Amann and the author in a paper published in J. of Diff. Eqns. in 1998. Besides this characterization has been shown to be a pivotal result for the development of the modern theory of spatially heterogeneous nonlinear elliptic and parabolic problems; it has allowed us to update the classical theory on the maximum and minimum principles by providing with some extremely sharp refinements of the classical results of Hopf and Protter-Weinberger. By a celebrated result of Berestycki, Nirenberg and Varadhan, Comm. Pure Appl. Maths. in 1994, the characterization theorem is partially true under no regularity constraints on the support domain for Dirichlet boundary conditions.Instead of encyclopedic generality, this book pays special attention to completeness, clarity and transparency of its exposition so that it can be taught even at an advanced undergraduate level. Adopting this perspective, it is a textbook; however, it is simultaneously a research monograph about the maximum principle, as it brings together for the first time in the form of a book, the most paradigmatic classical results together with a series of recent fundamental results scattered in a number of independent papers by the author of this book and his collaborators.Chapters 3, 4, and 5 can be delivered as a classical undergraduate, or graduate, course in Hilbert space techniques for linear second order elliptic operators, and Chaps. 1 and 2 complete the classical results on the minimum principle covered by the paradigmatic textbook of Protter and Weinberger by incorporating some recent classification theorems of supersolutions by Walter, 1989, and the author, 2003. Consequently, these five chapters can be taught at an undergraduate, or graduate, level. Chapters 6 and 7 study the celebrated theorem of Krein-Rutman and infer from it the characterizations of the strong maximum principle of Molina-Meyer and Amann, in collaboration with the author, which have been incorporated to a textbook by the first time here, as well as the results of Chaps. 8 and 9, polishing some recent joint work of Cano-Casanova with the author. Consequently, the second half of the book consists of a more specialized monograph on the maximum principle and the underlying principal eigenvalues.

Homogenization of Differential Operators and Integral Functionals

Download Homogenization of Differential Operators and Integral Functionals PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642846599
Total Pages : 583 pages
Book Rating : 4.6/5 (428 download)

DOWNLOAD NOW!


Book Synopsis Homogenization of Differential Operators and Integral Functionals by : V.V. Jikov

Download or read book Homogenization of Differential Operators and Integral Functionals written by V.V. Jikov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathe matical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of non linear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogeniza tion problems for· partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each sep arate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the con stituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc.