Spectral and Scattering Theory for Ordinary Differential Equations

Download Spectral and Scattering Theory for Ordinary Differential Equations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030590887
Total Pages : 379 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Spectral and Scattering Theory for Ordinary Differential Equations by : Christer Bennewitz

Download or read book Spectral and Scattering Theory for Ordinary Differential Equations written by Christer Bennewitz and published by Springer Nature. This book was released on 2020-10-27 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate textbook offers an introduction to the spectral theory of ordinary differential equations, focusing on Sturm–Liouville equations. Sturm–Liouville theory has applications in partial differential equations and mathematical physics. Examples include classical PDEs such as the heat and wave equations. Written by leading experts, this book provides a modern, systematic treatment of the theory. The main topics are the spectral theory and eigenfunction expansions for Sturm–Liouville equations, as well as scattering theory and inverse spectral theory. It is the first book offering a complete account of the left-definite theory for Sturm–Liouville equations. The modest prerequisites for this book are basic one-variable real analysis, linear algebra, as well as an introductory course in complex analysis. More advanced background required in some parts of the book is completely covered in the appendices. With exercises in each chapter, the book is suitable for advanced undergraduate and graduate courses, either as an introduction to spectral theory in Hilbert space, or to the spectral theory of ordinary differential equations. Advanced topics such as the left-definite theory and the Camassa–Holm equation, as well as bibliographical notes, make the book a valuable reference for experts.

Spectral and Scattering Theory

Download Spectral and Scattering Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1489915524
Total Pages : 207 pages
Book Rating : 4.4/5 (899 download)

DOWNLOAD NOW!


Book Synopsis Spectral and Scattering Theory by : Alexander G. Ramm

Download or read book Spectral and Scattering Theory written by Alexander G. Ramm and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of Sessions from the First Congress of the International Society for Analysis, Applications and Computing held in Newark, Delaware, June, 2-, 1997

An Introduction to Inverse Scattering and Inverse Spectral Problems

Download An Introduction to Inverse Scattering and Inverse Spectral Problems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898713870
Total Pages : 206 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Inverse Scattering and Inverse Spectral Problems by : Khosrow Chadan

Download or read book An Introduction to Inverse Scattering and Inverse Spectral Problems written by Khosrow Chadan and published by SIAM. This book was released on 1997-01-01 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a clearly written introduction to three central areas of inverse problems: inverse problems in electromagnetic scattering theory, inverse spectral theory, and inverse problems in quantum scattering theory. Inverse problems, one of the most attractive parts of applied mathematics, attempt to obtain information about structures by nondestructive measurements. Based on a series of lectures presented by three of the authors, all experts in the field, the book provides a quick and easy way for readers to become familiar with the area through a survey of recent developments in inverse spectral and inverse scattering problems.

Spectral Geometry of Partial Differential Operators

Download Spectral Geometry of Partial Differential Operators PDF Online Free

Author :
Publisher : Chapman & Hall/CRC
ISBN 13 : 9781138360716
Total Pages : 0 pages
Book Rating : 4.3/5 (67 download)

DOWNLOAD NOW!


Book Synopsis Spectral Geometry of Partial Differential Operators by : Michael Ruzhansky

Download or read book Spectral Geometry of Partial Differential Operators written by Michael Ruzhansky and published by Chapman & Hall/CRC. This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Access; Differential; Durvudkhan; Geometry; Makhmud; Michael; OA; Open; Operators; Partial; Ruzhansky; Sadybekov; Spectral; Suragan.

Floquet Theory for Partial Differential Equations

Download Floquet Theory for Partial Differential Equations PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034885733
Total Pages : 363 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Floquet Theory for Partial Differential Equations by : P.A. Kuchment

Download or read book Floquet Theory for Partial Differential Equations written by P.A. Kuchment and published by Birkhäuser. This book was released on 2012-12-06 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear differential equations with periodic coefficients constitute a well developed part of the theory of ordinary differential equations [17, 94, 156, 177, 178, 272, 389]. They arise in many physical and technical applications [177, 178, 272]. A new wave of interest in this subject has been stimulated during the last two decades by the development of the inverse scattering method for integration of nonlinear differential equations. This has led to significant progress in this traditional area [27, 71, 72, 111 119, 250, 276, 277, 284, 286, 287, 312, 313, 337, 349, 354, 392, 393, 403, 404]. At the same time, many theoretical and applied problems lead to periodic partial differential equations. We can mention, for instance, quantum mechanics [14, 18, 40, 54, 60, 91, 92, 107, 123, 157-160, 192, 193, 204, 315, 367, 412, 414, 415, 417], hydrodynamics [179, 180], elasticity theory [395], the theory of guided waves [87-89, 208, 300], homogenization theory [29, 41, 348], direct and inverse scattering [175, 206, 216, 314, 388, 406-408], parametric resonance theory [122, 178], and spectral theory and spectral geometry [103 105, 381, 382, 389]. There is a sjgnificant distinction between the cases of ordinary and partial differential periodic equations. The main tool of the theory of periodic ordinary differential equations is the so-called Floquet theory [17, 94, 120, 156, 177, 267, 272, 389]. Its central result is the following theorem (sometimes called Floquet-Lyapunov theorem) [120, 267].

Spectral Theory and Differential Equations

Download Spectral Theory and Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540374442
Total Pages : 338 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory and Differential Equations by : W.N. Everitt

Download or read book Spectral Theory and Differential Equations written by W.N. Everitt and published by Springer. This book was released on 2006-11-15 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Inverse Spectral and Scattering Theory

Download Inverse Spectral and Scattering Theory PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811581991
Total Pages : 140 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Inverse Spectral and Scattering Theory by : Hiroshi Isozaki

Download or read book Inverse Spectral and Scattering Theory written by Hiroshi Isozaki and published by Springer Nature. This book was released on 2020-09-26 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide basic knowledge of the inverse problems arising in various areas in mathematics, physics, engineering, and medical science. These practical problems boil down to the mathematical question in which one tries to recover the operator (coefficients) or the domain (manifolds) from spectral data. The characteristic properties of the operators in question are often reduced to those of Schrödinger operators. We start from the 1-dimensional theory to observe the main features of inverse spectral problems and then proceed to multi-dimensions. The first milestone is the Borg–Levinson theorem in the inverse Dirichlet problem in a bounded domain elucidating basic motivation of the inverse problem as well as the difference between 1-dimension and multi-dimension. The main theme is the inverse scattering, in which the spectral data is Heisenberg’s S-matrix defined through the observation of the asymptotic behavior at infinity of solutions. Significant progress has been made in the past 30 years by using the Faddeev–Green function or the complex geometrical optics solution by Sylvester and Uhlmann, which made it possible to reconstruct the potential from the S-matrix of one fixed energy. One can also prove the equivalence of the knowledge of S-matrix and that of the Dirichlet-to-Neumann map for boundary value problems in bounded domains. We apply this idea also to the Dirac equation, the Maxwell equation, and discrete Schrödinger operators on perturbed lattices. Our final topic is the boundary control method introduced by Belishev and Kurylev, which is for the moment the only systematic method for the reconstruction of the Riemannian metric from the boundary observation, which we apply to the inverse scattering on non-compact manifolds. We stress that this book focuses on the lucid exposition of these problems and mathematical backgrounds by explaining the basic knowledge of functional analysis and spectral theory, omitting the technical details in order to make the book accessible to graduate students as an introduction to partial differential equations (PDEs) and functional analysis.

Spectral Theory of Differential Operators

Download Spectral Theory of Differential Operators PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821890776
Total Pages : 318 pages
Book Rating : 4.8/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory of Differential Operators by : T. Suslina

Download or read book Spectral Theory of Differential Operators written by T. Suslina and published by American Mathematical Soc.. This book was released on 2008-01-01 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume is dedicated to the eightieth birthday of Professor M. Sh. Birman. It contains original articles in spectral and scattering theory of differential operators, in particular, Schrodinger operators, and in homogenization theory. All articles are written by members of M. Sh. Birman's research group who are affiliated with different universities all over the world. A specific feature of the majority of the papers is a combination of traditional methods with new modern ideas."--BOOK JACKET.

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations

Download Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461235065
Total Pages : 133 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations by : P. Constantin

Download or read book Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations written by P. Constantin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work was initiated in the summer of 1985 while all of the authors were at the Center of Nonlinear Studies of the Los Alamos National Laboratory; it was then continued and polished while the authors were at Indiana Univer sity, at the University of Paris-Sud (Orsay), and again at Los Alamos in 1986 and 1987. Our aim was to present a direct geometric approach in the theory of inertial manifolds (global analogs of the unstable-center manifolds) for dissipative partial differential equations. This approach, based on Cauchy integral mani folds for which the solutions of the partial differential equations are the generating characteristic curves, has the advantage that it provides a sound basis for numerical Galerkin schemes obtained by approximating the inertial manifold. The work is self-contained and the prerequisites are at the level of a graduate student. The theoretical part of the work is developed in Chapters 2-14, while in Chapters 15-19 we apply the theory to several remarkable partial differ ential equations.

Eigenfunctions of the Laplacian on a Riemannian Manifold

Download Eigenfunctions of the Laplacian on a Riemannian Manifold PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470410370
Total Pages : 410 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Eigenfunctions of the Laplacian on a Riemannian Manifold by : Steve Zelditch

Download or read book Eigenfunctions of the Laplacian on a Riemannian Manifold written by Steve Zelditch and published by American Mathematical Soc.. This book was released on 2017-12-12 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.

Inverse and Algebraic Quantum Scattering Theory

Download Inverse and Algebraic Quantum Scattering Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662141450
Total Pages : 402 pages
Book Rating : 4.6/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Inverse and Algebraic Quantum Scattering Theory by : Barnabas Apagyi

Download or read book Inverse and Algebraic Quantum Scattering Theory written by Barnabas Apagyi and published by Springer. This book was released on 2013-12-30 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains three interrelated, beautiful, and useful topics of quantum scattering theory: inverse scattering theory, algebraic scattering theory and supersymmetrical quantum mechanics. The contributions cover such issues as coupled-channel inversions at fixed energy, inversion of pion-nucleon scattering cross-sections into potentials, inversions in neutron and x-ray reflection, 3-dimensional fixed-energy inversion, inversion of electron scattering data affected by dipole polarization, nucleon-nucleon potentials by inversion versus meson-exchange theory, potential reversal and reflectionless impurities in periodic structures, quantum design in spectral, scattering, and decay control, solution hierarchy of Toda lattices, etc.

Inverse Problems in Quantum Scattering Theory

Download Inverse Problems in Quantum Scattering Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662121255
Total Pages : 364 pages
Book Rating : 4.6/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Inverse Problems in Quantum Scattering Theory by : K. Chadan

Download or read book Inverse Problems in Quantum Scattering Theory written by K. Chadan and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Sturm?Liouville Operators, Their Spectral Theory, and Some Applications

Download Sturm?Liouville Operators, Their Spectral Theory, and Some Applications PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470476665
Total Pages : 946 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Sturm?Liouville Operators, Their Spectral Theory, and Some Applications by : Fritz Gesztesy

Download or read book Sturm?Liouville Operators, Their Spectral Theory, and Some Applications written by Fritz Gesztesy and published by American Mathematical Society. This book was released on 2024-09-24 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed treatment of the various facets of modern Sturm?Liouville theory, including such topics as Weyl?Titchmarsh theory, classical, renormalized, and perturbative oscillation theory, boundary data maps, traces and determinants for Sturm?Liouville operators, strongly singular Sturm?Liouville differential operators, generalized boundary values, and Sturm?Liouville operators with distributional coefficients. To illustrate the theory, the book develops an array of examples from Floquet theory to short-range scattering theory, higher-order KdV trace relations, elliptic and algebro-geometric finite gap potentials, reflectionless potentials and the Sodin?Yuditskii class, as well as a detailed collection of singular examples, such as the Bessel, generalized Bessel, and Jacobi operators. A set of appendices contains background on the basics of linear operators and spectral theory in Hilbert spaces, Schatten?von Neumann classes of compact operators, self-adjoint extensions of symmetric operators, including the Friedrichs and Krein?von Neumann extensions, boundary triplets for ODEs, Krein-type resolvent formulas, sesquilinear forms, Nevanlinna?Herglotz functions, and Bessel functions.

Selected Papers of Norman Levinson

Download Selected Papers of Norman Levinson PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817638627
Total Pages : 584 pages
Book Rating : 4.6/5 (386 download)

DOWNLOAD NOW!


Book Synopsis Selected Papers of Norman Levinson by : J.A. Nohel

Download or read book Selected Papers of Norman Levinson written by J.A. Nohel and published by Springer Science & Business Media. This book was released on 1997-12-18 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: The deep and original ideas of Norman Levinson have had a lasting impact on fields as diverse as differential & integral equations, harmonic, complex & stochas tic analysis, and analytic number theory during more than half a century. Yet, the extent of his contributions has not always been fully recognized in the mathematics community. For example, the horseshoe mapping constructed by Stephen Smale in 1960 played a central role in the development of the modern theory of dynami cal systems and chaos. The horseshoe map was directly stimulated by Levinson's research on forced periodic oscillations of the Van der Pol oscillator, and specifi cally by his seminal work initiated by Cartwright and Littlewood. In other topics, Levinson provided the foundation for a rigorous theory of singularly perturbed dif ferential equations. He also made fundamental contributions to inverse scattering theory by showing the connection between scattering data and spectral data, thus relating the famous Gel'fand-Levitan method to the inverse scattering problem for the Schrodinger equation. He was the first to analyze and make explicit use of wave functions, now widely known as the Jost functions. Near the end of his life, Levinson returned to research in analytic number theory and made profound progress on the resolution of the Riemann Hypothesis. Levinson's papers are typically tightly crafted and masterpieces of brevity and clarity. It is our hope that the publication of these selected papers will bring his mathematical ideas to the attention of the larger mathematical community.

Analysis as a Tool in Mathematical Physics

Download Analysis as a Tool in Mathematical Physics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030315312
Total Pages : 627 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Analysis as a Tool in Mathematical Physics by : Pavel Kurasov

Download or read book Analysis as a Tool in Mathematical Physics written by Pavel Kurasov and published by Springer Nature. This book was released on 2020-07-14 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boris Pavlov (1936-2016), to whom this volume is dedicated, was a prominent specialist in analysis, operator theory, and mathematical physics. As one of the most influential members of the St. Petersburg Mathematical School, he was one of the founders of the Leningrad School of Non-self-adjoint Operators. This volume collects research papers originating from two conferences that were organized in memory of Boris Pavlov: “Spectral Theory and Applications”, held in Stockholm, Sweden, in March 2016, and “Operator Theory, Analysis and Mathematical Physics – OTAMP2016” held at the Euler Institute in St. Petersburg, Russia, in August 2016. The volume also includes water-color paintings by Boris Pavlov, some personal photographs, as well as tributes from friends and colleagues.

Encyclopaedia of Mathematics, Supplement III

Download Encyclopaedia of Mathematics, Supplement III PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0306483734
Total Pages : 564 pages
Book Rating : 4.3/5 (64 download)

DOWNLOAD NOW!


Book Synopsis Encyclopaedia of Mathematics, Supplement III by : Michiel Hazewinkel

Download or read book Encyclopaedia of Mathematics, Supplement III written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2007-11-23 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third supplementary volume to Kluwer's highly acclaimed twelve-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing twelve volumes, and together, these thirteen volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.

Encyclopaedia of Mathematics

Download Encyclopaedia of Mathematics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401512353
Total Pages : 549 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel

Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathe matics. It is a translation with updates and editorial comments of the Soviet Mathematical Encyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977-1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivi sion has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathematics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, en gineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.