Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Spectral Analysis For Ranked Data
Download Spectral Analysis For Ranked Data full books in PDF, epub, and Kindle. Read online Spectral Analysis For Ranked Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Analyzing and Modeling Rank Data by : John I Marden
Download or read book Analyzing and Modeling Rank Data written by John I Marden and published by CRC Press. This book was released on 2014-01-23 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first single source volume to fully address this prevalent practice in both its analytical and modeling aspects. The information discussed presents the use of data consisting of rankings in such diverse fields as psychology, animal science, educational testing, sociology, economics, and biology. This book systematically presents th
Book Synopsis Statistical Methods for Ranking Data by : Mayer Alvo
Download or read book Statistical Methods for Ranking Data written by Mayer Alvo and published by Springer. This book was released on 2014-09-02 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.
Book Synopsis Probability Models and Statistical Analyses for Ranking Data by : Michael A. Fligner
Download or read book Probability Models and Statistical Analyses for Ranking Data written by Michael A. Fligner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: In June of 1990, a conference was held on Probablity Models and Statisti cal Analyses for Ranking Data, under the joint auspices of the American Mathematical Society, the Institute for Mathematical Statistics, and the Society of Industrial and Applied Mathematicians. The conference took place at the University of Massachusetts, Amherst, and was attended by 36 participants, including statisticians, mathematicians, psychologists and sociologists from the United States, Canada, Israel, Italy, and The Nether lands. There were 18 presentations on a wide variety of topics involving ranking data. This volume is a collection of 14 of these presentations, as well as 5 miscellaneous papers that were contributed by conference participants. We would like to thank Carole Kohanski, summer program coordinator for the American Mathematical Society, for her assistance in arranging the conference; M. Steigerwald for preparing the manuscripts for publication; Martin Gilchrist at Springer-Verlag for editorial advice; and Persi Diaconis for contributing the Foreword. Special thanks go to the anonymous referees for their careful readings and constructive comments. Finally, we thank the National Science Foundation for their sponsorship of the AMS-IMS-SIAM Joint Summer Programs. Contents Preface vii Conference Participants xiii Foreword xvii 1 Ranking Models with Item Covariates 1 D. E. Critchlow and M. A. Fligner 1. 1 Introduction. . . . . . . . . . . . . . . 1 1. 2 Basic Ranking Models and Their Parameters 2 1. 3 Ranking Models with Covariates 8 1. 4 Estimation 9 1. 5 Example. 11 1. 6 Discussion. 14 1. 7 Appendix . 15 1. 8 References.
Book Synopsis Spectral Analysis of Large Dimensional Random Matrices by : Zhidong Bai
Download or read book Spectral Analysis of Large Dimensional Random Matrices written by Zhidong Bai and published by Springer Science & Business Media. This book was released on 2009-12-10 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to introduce basic concepts, main results, and widely applied mathematical tools in the spectral analysis of large dimensional random matrices. The core of the book focuses on results established under moment conditions on random variables using probabilistic methods, and is thus easily applicable to statistics and other areas of science. The book introduces fundamental results, most of them investigated by the authors, such as the semicircular law of Wigner matrices, the Marcenko-Pastur law, the limiting spectral distribution of the multivariate F matrix, limits of extreme eigenvalues, spectrum separation theorems, convergence rates of empirical distributions, central limit theorems of linear spectral statistics, and the partial solution of the famous circular law. While deriving the main results, the book simultaneously emphasizes the ideas and methodologies of the fundamental mathematical tools, among them being: truncation techniques, matrix identities, moment convergence theorems, and the Stieltjes transform. Its treatment is especially fitting to the needs of mathematics and statistics graduate students and beginning researchers, having a basic knowledge of matrix theory and an understanding of probability theory at the graduate level, who desire to learn the concepts and tools in solving problems in this area. It can also serve as a detailed handbook on results of large dimensional random matrices for practical users. This second edition includes two additional chapters, one on the authors' results on the limiting behavior of eigenvectors of sample covariance matrices, another on applications to wireless communications and finance. While attempting to bring this edition up-to-date on recent work, it also provides summaries of other areas which are typically considered part of the general field of random matrix theory.
Book Synopsis Spectral Analysis and Its Applications by : Gwilym M. Jenkins
Download or read book Spectral Analysis and Its Applications written by Gwilym M. Jenkins and published by Emerson Adams PressInc. This book was released on 1968 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Spectral Analysis for Physical Applications by : Donald B. Percival
Download or read book Spectral Analysis for Physical Applications written by Donald B. Percival and published by Cambridge University Press. This book was released on 1993-06-03 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an up-to-date introduction to univariate spectral analysis at the graduate level, which reflects a new scientific awareness of spectral complexity, as well as the widespread use of spectral analysis on digital computers with considerable computational power. The text provides theoretical and computational guidance on the available techniques, emphasizing those that work in practice. Spectral analysis finds extensive application in the analysis of data arising in many of the physical sciences, ranging from electrical engineering and physics to geophysics and oceanography. A valuable feature of the text is that many examples are given showing the application of spectral analysis to real data sets. Special emphasis is placed on the multitaper technique, because of its practical success in handling spectra with intricate structure, and its power to handle data with or without spectral lines. The text contains a large number of exercises, together with an extensive bibliography.
Book Synopsis Spectral Analysis for Univariate Time Series by : Donald B. Percival
Download or read book Spectral Analysis for Univariate Time Series written by Donald B. Percival and published by Cambridge University Press. This book was released on 2020-03-19 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral analysis is widely used to interpret time series collected in diverse areas. This book covers the statistical theory behind spectral analysis and provides data analysts with the tools needed to transition theory into practice. Actual time series from oceanography, metrology, atmospheric science and other areas are used in running examples throughout, to allow clear comparison of how the various methods address questions of interest. All major nonparametric and parametric spectral analysis techniques are discussed, with emphasis on the multitaper method, both in its original formulation involving Slepian tapers and in a popular alternative using sinusoidal tapers. The authors take a unified approach to quantifying the bandwidth of different nonparametric spectral estimates. An extensive set of exercises allows readers to test their understanding of theory and practical analysis. The time series used as examples and R language code for recreating the analyses of the series are available from the book's website.
Book Synopsis Spectral Methods for Data Science by : Yuxin Chen
Download or read book Spectral Methods for Data Science written by Yuxin Chen and published by . This book was released on 2021 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a systematic, yet accessible introduction to spectral methods from a modern statistical perspective. It is essential reading for all students, researchers and practitioners working in Data Science.
Book Synopsis Digital Spectral Analysis by : S. Lawrence Marple, Jr.
Download or read book Digital Spectral Analysis written by S. Lawrence Marple, Jr. and published by Courier Dover Publications. This book was released on 2019-03-20 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to offer a broad perspective on spectral estimations techniques and their implementation, this text provides theoretical background and review material in linear systems, Fourier transforms, matrix algebra, random processes, and statistics. 1987 edition.
Book Synopsis Spectral Algorithms by : Ravindran Kannan
Download or read book Spectral Algorithms written by Ravindran Kannan and published by Now Publishers Inc. This book was released on 2009 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral methods refer to the use of eigenvalues, eigenvectors, singular values and singular vectors. They are widely used in Engineering, Applied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to "discrete" as well as "continuous" problems. Spectral Algorithms describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. The first part of the book presents applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part of the book is motivated by efficiency considerations. A feature of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on "sampling on the fly" from massive matrices. Good estimates of singular values and low rank approximations of the whole matrix can be provably derived from a sample. The main emphasis in the second part of the book is to present these sampling methods with rigorous error bounds. It also presents recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems.
Book Synopsis Spectral Analysis of Signals by : Yanwei Wang
Download or read book Spectral Analysis of Signals written by Yanwei Wang and published by Morgan & Claypool Publishers. This book was released on 2005 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.
Book Synopsis Workshop on Higher-Order Spectral Analysis by :
Download or read book Workshop on Higher-Order Spectral Analysis written by and published by . This book was released on 1989 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Spectral Analysis of Time-series Data by : Rebecca M. Warner
Download or read book Spectral Analysis of Time-series Data written by Rebecca M. Warner and published by Guilford Press. This book was released on 1998-05-22 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to methods for detecting and describing cyclic patterns in time-series data. It is written both for researchers and students new to the area and for those who have already collected time-series data but wish to learn new ways of understanding and presenting them. Facilitating the interpretation of observations of behavior, physiology, mood, perceptual threshold, social indicator variables, and other responses, the book focuses on practical applications and requires much less mathematical background than most comparable texts. Using real data sets and currently available software (SPSS for Windows), the author employs extensive examples to clarify key concepts. Topics covered include research design issues, preliminary data screening, identification and description of cycles, summary of results across time series, and assessment of relations between time series. Also considered are theoretical questions, problems of interpretation, and potential sources of artifact.
Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Dimitrios Gunopulos
Download or read book Machine Learning and Knowledge Discovery in Databases written by Dimitrios Gunopulos and published by Springer. This book was released on 2011-09-06 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume set LNAI 6911, LNAI 6912, and LNAI 6913 constitutes the refereed proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2011, held in Athens, Greece, in September 2011. The 121 revised full papers presented together with 10 invited talks and 11 demos in the three volumes, were carefully reviewed and selected from about 600 paper submissions. The papers address all areas related to machine learning and knowledge discovery in databases as well as other innovative application domains such as supervised and unsupervised learning with some innovative contributions in fundamental issues; dimensionality reduction, distance and similarity learning, model learning and matrix/tensor analysis; graph mining, graphical models, hidden markov models, kernel methods, active and ensemble learning, semi-supervised and transductive learning, mining sparse representations, model learning, inductive logic programming, and statistical learning. a significant part of the papers covers novel and timely applications of data mining and machine learning in industrial domains.
Book Synopsis Advances in Statistical Models for Data Analysis by : Isabella Morlini
Download or read book Advances in Statistical Models for Data Analysis written by Isabella Morlini and published by Springer. This book was released on 2015-09-04 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume focuses on recent research results in classification, multivariate statistics and machine learning and highlights advances in statistical models for data analysis. The volume provides both methodological developments and contributions to a wide range of application areas such as economics, marketing, education, social sciences and environment. The papers in this volume were first presented at the 9th biannual meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in September 2013 at the University of Modena and Reggio Emilia, Italy.
Book Synopsis Algorithms from and for Nature and Life by : Berthold Lausen
Download or read book Algorithms from and for Nature and Life written by Berthold Lausen and published by Springer Science & Business Media. This book was released on 2013-08-28 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides approaches and solutions to challenges occurring at the interface of research fields such as, e.g., data analysis, data mining and knowledge discovery, computer science, operations research, and statistics. In addition to theory-oriented contributions various application areas are included. Moreover, traditional classification research directions concerning network data, graphs, and social relationships as well as statistical musicology describe examples for current interest fields tackled by the authors. The book comprises a total of 55 selected papers presented at the Joint Conference of the German Classification Society (GfKl), the German Association for Pattern Recognition (DAGM), and the Symposium of the International Federation of Classification Societies (IFCS) in 2011.
Book Synopsis Statistical Models and Methods for Data Science by : Leonardo Grilli
Download or read book Statistical Models and Methods for Data Science written by Leonardo Grilli and published by Springer Nature. This book was released on 2023-07-24 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on methods and models in classification and data analysis and presents real-world applications at the interface with data science. Numerous topics are covered, ranging from statistical inference and modelling to clustering and factorial methods, and from directional data analysis to time series analysis and small area estimation. The applications deal with new developments in a variety of fields, including medicine, finance, engineering, marketing, and cyber risk. The contents comprise selected and peer-reviewed contributions presented at the 13th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society, CLADAG 2021, held (online) in Florence, Italy, on September 9–11, 2021. CLADAG promotes advanced methodological research in multivariate statistics with a special focus on data analysis and classification, and supports the exchange and dissemination of ideas, methodological concepts, numerical methods, algorithms, and computational and applied results at the interface between classification and data science.