Spatio-Temporal Statistics with R

Download Spatio-Temporal Statistics with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429649789
Total Pages : 397 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Spatio-Temporal Statistics with R by : Christopher K. Wikle

Download or read book Spatio-Temporal Statistics with R written by Christopher K. Wikle and published by CRC Press. This book was released on 2019-02-18 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these "big data" that are available are spatio-temporal in nature, meaning that they can be indexed by their spatial locations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modelling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation Provides a gradual entry to the methodological aspects of spatio-temporal statistics Provides broad coverage of using R as well as "R Tips" throughout. Features detailed examples and applications in end-of-chapter Labs Features "Technical Notes" throughout to provide additional technical detail where relevant Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.

Spatio-Temporal Data Analytics for Wind Energy Integration

Download Spatio-Temporal Data Analytics for Wind Energy Integration PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331912319X
Total Pages : 86 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Spatio-Temporal Data Analytics for Wind Energy Integration by : Lei Yang

Download or read book Spatio-Temporal Data Analytics for Wind Energy Integration written by Lei Yang and published by Springer. This book was released on 2014-11-14 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic dispatch (ED) and interruptible load management are investigated as well. Spatio-Temporal Data Analytics for Wind Energy Integration is valuable for researchers and professionals working towards renewable energy integration. Advanced-level students studying electrical, computer and energy engineering should also find the content useful.

Spatiotemporal Random Fields

Download Spatiotemporal Random Fields PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128030321
Total Pages : 698 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Spatiotemporal Random Fields by : George Christakos

Download or read book Spatiotemporal Random Fields written by George Christakos and published by Elsevier. This book was released on 2017-07-26 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatiotemporal Random Fields: Theory and Applications, Second Edition, provides readers with a new and updated edition of the text that explores the application of spatiotemporal random field models to problems in ocean, earth, and atmospheric sciences, spatiotemporal statistics, and geostatistics, among others. The new edition features considerable detail of spatiotemporal random field theory, including ordinary and generalized models, as well as space-time homostationary, isostationary and hetrogeneous approaches. Presenting new theoretical and applied results, with particular emphasis on space-time determination and interpretation, spatiotemporal analysis and modeling, random field geometry, random functionals, probability law, and covariance construction techniques, this book highlights the key role of space-time metrics, the physical interpretation of stochastic differential equations, higher-order space-time variability functions, the validity of major theoretical assumptions in real-world practice (covariance positive-definiteness, metric-adequacy etc.), and the emergence of interdisciplinary phenomena in conditions of multi-sourced real-world uncertainty. - Contains applications in the form of examples and case studies, providing readers with first-hand experiences - Presents an easy to follow narrative which progresses from simple concepts to more challenging ideas - Includes significant updates from the previous edition, including a focus on new theoretical and applied results

Statistics for Spatio-Temporal Data

Download Statistics for Spatio-Temporal Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119243041
Total Pages : 612 pages
Book Rating : 4.1/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Statistics for Spatio-Temporal Data by : Noel Cressie

Download or read book Statistics for Spatio-Temporal Data written by Noel Cressie and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Spatial and Spatio-Temporal Geostatistical Modeling and Kriging

Download Spatial and Spatio-Temporal Geostatistical Modeling and Kriging PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118762436
Total Pages : 400 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Spatial and Spatio-Temporal Geostatistical Modeling and Kriging by : José-María Montero

Download or read book Spatial and Spatio-Temporal Geostatistical Modeling and Kriging written by José-María Montero and published by John Wiley & Sons. This book was released on 2015-08-18 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Methods for Spatial and Spatio-Temporal Data Analysis provides a complete range of spatio-temporal covariance functions and discusses ways of constructing them. This book is a unified approach to modeling spatial and spatio-temporal data together with significant developments in statistical methodology with applications in R. This book includes: Methods for selecting valid covariance functions from the empirical counterparts that overcome the existing limitations of the traditional methods. The most innovative developments in the different steps of the kriging process. An up-to-date account of strategies for dealing with data evolving in space and time. An accompanying website featuring R code and examples

Conference Proceedings of the 2023 3rd International Joint Conference on Energy, Electrical and Power Engineering

Download Conference Proceedings of the 2023 3rd International Joint Conference on Energy, Electrical and Power Engineering PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819739403
Total Pages : 822 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Conference Proceedings of the 2023 3rd International Joint Conference on Energy, Electrical and Power Engineering by : Cungang Hu

Download or read book Conference Proceedings of the 2023 3rd International Joint Conference on Energy, Electrical and Power Engineering written by Cungang Hu and published by Springer Nature. This book was released on with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Spatio-temporal Design

Download Spatio-temporal Design PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118441885
Total Pages : 320 pages
Book Rating : 4.1/5 (184 download)

DOWNLOAD NOW!


Book Synopsis Spatio-temporal Design by : Jorge Mateu

Download or read book Spatio-temporal Design written by Jorge Mateu and published by John Wiley & Sons. This book was released on 2012-11-05 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art presentation of optimum spatio-temporal sampling design - bridging classic ideas with modern statistical modeling concepts and the latest computational methods. Spatio-temporal Design presents a comprehensive state-of-the-art presentation combining both classical and modern treatments of network design and planning for spatial and spatio-temporal data acquisition. A common problem set is interwoven throughout the chapters, providing various perspectives to illustrate a complete insight to the problem at hand. Motivated by the high demand for statistical analysis of data that takes spatial and spatio-temporal information into account, this book incorporates ideas from the areas of time series, spatial statistics and stochastic processes, and combines them to discuss optimum spatio-temporal sampling design. Spatio-temporal Design: Advances in Efficient Data Acquisition: Provides an up-to-date account of how to collect space-time data for monitoring, with a focus on statistical aspects and the latest computational methods Discusses basic methods and distinguishes between design and model-based approaches to collecting space-time data. Features model-based frequentist design for univariate and multivariate geostatistics, and second-phase spatial sampling. Integrates common data examples and case studies throughout the book in order to demonstrate the different approaches and their integration. Includes real data sets, data generating mechanisms and simulation scenarios. Accompanied by a supporting website featuring R code. Spatio-temporal Design presents an excellent book for graduate level students as well as a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Semantic Kriging for Spatio-temporal Prediction

Download Semantic Kriging for Spatio-temporal Prediction PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811386641
Total Pages : 144 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Semantic Kriging for Spatio-temporal Prediction by : Shrutilipi Bhattacharjee

Download or read book Semantic Kriging for Spatio-temporal Prediction written by Shrutilipi Bhattacharjee and published by Springer. This book was released on 2019-07-01 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book identifies the need for modeling auxiliary knowledge of the terrain to enhance the prediction accuracy of meteorological parameters. The spatial and spatio-temporal prediction of these parameters are important for the scientific community, and the semantic kriging (SemK) and its variants facilitate different types of prediction and forecasting, such as spatial and spatio-temporal, a-priori and a-posterior, univariate and multivariate. As such, the book also covers the process of deriving the meteorological parameters from raw satellite remote sensing imagery, and helps understanding different prediction method categories and the relation between spatial interpolation methods and other prediction methods. The book is a valuable resource for researchers working in the area of prediction of meteorological parameters, semantic analysis (ontology-based reasoning) of the terrain, and improving predictions using auxiliary knowledge of the terrain.

Wind Field and Solar Radiation Characterization and Forecasting

Download Wind Field and Solar Radiation Characterization and Forecasting PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331976876X
Total Pages : 263 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Wind Field and Solar Radiation Characterization and Forecasting by : Richard Perez

Download or read book Wind Field and Solar Radiation Characterization and Forecasting written by Richard Perez and published by Springer. This book was released on 2018-04-24 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition to describing core concepts and principles, this book reveals professional methodologies and tools used by national agencies and private corporations to predict sites’ potential for wind and solar power generation. Each chapter focuses on a different issue, showing readers the corresponding methodology, as well as examples of how to apply the techniques described. These techniques are explained with step-by-step guides that demonstrate how environmental variables in complex terrains can be characterized and forecasted.The authors present an adaptive finite element mass-consistent model, which computes a diagnostic wind field in the three-dimensional area of interest using observed wind data from measurement stations – data which is then interpolated using a physical model of the wind field in the boundary layer. An ensemble method is presented based on the perturbation of the numerical weather prediction models’ results. The book goes on to explain solar radiation characterization and forecasting. Solar radiation and electrical power generation temporal and spatial variability are discussed and modelled. Different statistical methods are presented in order to improve solar radiation forecasting using ground measurement, numerical weather predictions (NWPs) and satellite-derived data. This book is focused on both probabilistic and point forecast explaining different models and methodologies to improve the forecasting. The results obtained from various simulations around the world are presented in tables. Finally, the book explains a possible methodology to develop a Solar Map taking into account solar radiation, terrain surface conditions and cast shadows. As such, the book provides an overview of the concepts, principles and practices involved in the treatment of environmental variables related to solar radiation or wind fields, especially when complex terrains are involved, offering useful resources for students and researchers alike. It also equips professionals with the methodologies and tools needed to construct environmental variable maps and conduct forecasting for solar radiation and wind fields.

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Download Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429629850
Total Pages : 284 pages
Book Rating : 4.4/5 (296 download)

DOWNLOAD NOW!


Book Synopsis Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA by : Elias T. Krainski

Download or read book Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA written by Elias T. Krainski and published by CRC Press. This book was released on 2018-12-07 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Hierarchical Modelling for the Environmental Sciences

Download Hierarchical Modelling for the Environmental Sciences PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 : 019856967X
Total Pages : 216 pages
Book Rating : 4.1/5 (985 download)

DOWNLOAD NOW!


Book Synopsis Hierarchical Modelling for the Environmental Sciences by : James Samuel Clark

Download or read book Hierarchical Modelling for the Environmental Sciences written by James Samuel Clark and published by Oxford University Press, USA. This book was released on 2006 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: New statistical tools are changing the ways in which scientists analyze and interpret data and models. Many of these are emerging as a result of the wide availability of inexpensive, high speed computational power. In particular, hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complex, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences. Models have developed rapidly, and there is now a requirement for a clear exposition of the methodology through to application for a range of environmental challenges.

Spatiotemporal Modeling and Analysis in Marine Science

Download Spatiotemporal Modeling and Analysis in Marine Science PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832537448
Total Pages : 175 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Spatiotemporal Modeling and Analysis in Marine Science by : Junyu He

Download or read book Spatiotemporal Modeling and Analysis in Marine Science written by Junyu He and published by Frontiers Media SA. This book was released on 2023-11-29 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the development of earth observation technologies (such as satellite remote sensing, unmanned aerial vehicle, autonomous underwater vehicle, etc.), an era of big data with important and non-negligible spatial/temporal attributes comes. Novel and rigorous spatiotemporal methodologies and models are needed to process and analyze marine big data. Since many marine environmental processes, such as pollutants diffusion, algae distributions etc., vary or evolve across spatiotemporal domains, detecting the distributions and patterns of marine fauna and, particularly in the coastal regions, will improve our understanding of marine systems and can be beneficial in marine environmental management. The goals of this Research Topic, therefore, are two-fold: (a) to develop methodologies and models in theory and applications, including spatiotemporal geostatistics, geographic information system, deep learning, etc.; (b) to quantitatively gain the knowledge of the marine environment. This Research Topic will provide a platform for researchers to share and exchange their new knowledge gained in a spatiotemporal domain of marine or coastal regions. This Research Topic will cover, but is not limited to, the following areas: • Spatiotemporal variations of physical/chemical/biological indicators (such as chlorophyll, temperature, salinity, colorful dissolved organic matter, suspended solids, nutrients, microplastic, etc.) in marine. • Spatiotemporal variations of potential fishing grounds in marine. • Spatiotemporal variations of the ecosystems in coastal regions, such as salt marshes, mangroves, seagrass, macroalgae, etc. • Spatiotemporal distributions of the pollutants (such as heavy metals, polycyclic aromatic hydrocarbon, etc.) in marine and sediments. • Spatiotemporal evolution pattern modeling and prediction of the marine disasters and abnormal phenomena (such as algal bloom, typhoons, SST anomalies, etc).

On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory

Download On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030952312
Total Pages : 170 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory by : Fabian Guignard

Download or read book On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory written by Fabian Guignard and published by Springer Nature. This book was released on 2022-03-12 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: The gathering and storage of data indexed in space and time are experiencing unprecedented growth, demanding for advanced and adapted tools to analyse them. This thesis deals with the exploration and modelling of complex high-frequency and non-stationary spatio-temporal data. It proposes an efficient framework in modelling with machine learning algorithms spatio-temporal fields measured on irregular monitoring networks, accounting for high dimensional input space and large data sets. The uncertainty quantification is enabled by specifying this framework with the extreme learning machine, a particular type of artificial neural network for which analytical results, variance estimation and confidence intervals are developed. Particular attention is also paid to a highly versatile exploratory data analysis tool based on information theory, the Fisher-Shannon analysis, which can be used to assess the complexity of distributional properties of temporal, spatial and spatio-temporal data sets. Examples of the proposed methodologies are concentrated on data from environmental sciences, with an emphasis on wind speed modelling in complex mountainous terrain and the resulting renewable energy assessment. The contributions of this thesis can find a large number of applications in several research domains where exploration, understanding, clustering, interpolation and forecasting of complex phenomena are of utmost importance.

Spatial Statistics and Spatio-Temporal Data

Download Spatial Statistics and Spatio-Temporal Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470974923
Total Pages : 190 pages
Book Rating : 4.4/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Spatial Statistics and Spatio-Temporal Data by : Michael Sherman

Download or read book Spatial Statistics and Spatio-Temporal Data written by Michael Sherman and published by John Wiley & Sons. This book was released on 2011-01-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the spatial or spatio-temporal context, specifying the correct covariance function is fundamental to obtain efficient predictions, and to understand the underlying physical process of interest. This book focuses on covariance and variogram functions, their role in prediction, and appropriate choice of these functions in applications. Both recent and more established methods are illustrated to assess many common assumptions on these functions, such as, isotropy, separability, symmetry, and intrinsic correlation. After an extensive introduction to spatial methodology, the book details the effects of common covariance assumptions and addresses methods to assess the appropriateness of such assumptions for various data structures. Key features: An extensive introduction to spatial methodology including a survey of spatial covariance functions and their use in spatial prediction (kriging) is given. Explores methodology for assessing the appropriateness of assumptions on covariance functions in the spatial, spatio-temporal, multivariate spatial, and point pattern settings. Provides illustrations of all methods based on data and simulation experiments to demonstrate all methodology and guide to proper usage of all methods. Presents a brief survey of spatial and spatio-temporal models, highlighting the Gaussian case and the binary data setting, along with the different methodologies for estimation and model fitting for these two data structures. Discusses models that allow for anisotropic and nonseparable behaviour in covariance functions in the spatial, spatio-temporal and multivariate settings. Gives an introduction to point pattern models, including testing for randomness, and fitting regular and clustered point patterns. The importance and assessment of isotropy of point patterns is detailed. Statisticians, researchers, and data analysts working with spatial and space-time data will benefit from this book as well as will graduate students with a background in basic statistics following courses in engineering, quantitative ecology or atmospheric science.

Machine Learning for Spatial Environmental Data

Download Machine Learning for Spatial Environmental Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439808082
Total Pages : 383 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Spatial Environmental Data by : Mikhail Kanevski

Download or read book Machine Learning for Spatial Environmental Data written by Mikhail Kanevski and published by CRC Press. This book was released on 2009-06-09 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses machine learning algorithms, such as artificial neural networks of different architectures, statistical learning theory, and Support Vector Machines used for the classification and mapping of spatially distributed data. It presents basic geostatistical algorithms as well. The authors describe new trends in machine lea

Deep Learning for Marine Science

Download Deep Learning for Marine Science PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832549055
Total Pages : 555 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Marine Science by : Haiyong Zheng

Download or read book Deep Learning for Marine Science written by Haiyong Zheng and published by Frontiers Media SA. This book was released on 2024-05-15 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning (DL), mainly composed of deep and complex neural networks such as recurrent network and convolutional network, is an emerging research branch in the field of artificial intelligence and machine learning. DL revolution has a far-reaching impact on all scientific disciplines and every corner of our lives. With continuing technological advances, marine science is entering into the big data era with the exponential growth of information. DL is an effective means of harnessing the power of big data. Combined with unprecedented data from cameras, acoustic recorders, satellite remote sensing, and large model outputs, DL enables scientists to solve complex problems in biology, ecosystems, climate, energy, as well as physical and chemical interactions. Although DL has made great strides, it is still only beginning to emerge in many fields of marine science, especially towards representative applications and best practices for the automatic analysis of marine organisms and marine environments. DL in nowadays' marine science mainly leverages cutting-edge techniques of deep neural networks and massive data which collected by in-situ optical or acoustic imaging sensors for underwater applications, such as plankton classification and coral reef detection. This research topic aims to expand the applications of marine science to cover all aspects of detection, classification, segmentation, localization, and density estimation of marine objects, organisms, and phenomena.

Bayesian Inference in Wavelet-Based Models

Download Bayesian Inference in Wavelet-Based Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461205670
Total Pages : 406 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Inference in Wavelet-Based Models by : Peter Müller

Download or read book Bayesian Inference in Wavelet-Based Models written by Peter Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.