Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Spatio Temporal Models With Time Varying Spatial Model Error For Environmental Processes
Download Spatio Temporal Models With Time Varying Spatial Model Error For Environmental Processes full books in PDF, epub, and Kindle. Read online Spatio Temporal Models With Time Varying Spatial Model Error For Environmental Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Spatio-Temporal Methods in Environmental Epidemiology by : Gavin Shaddick
Download or read book Spatio-Temporal Methods in Environmental Epidemiology written by Gavin Shaddick and published by CRC Press. This book was released on 2015-06-17 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Teaches Students How to Perform Spatio-Temporal Analyses within Epidemiological StudiesSpatio-Temporal Methods in Environmental Epidemiology is the first book of its kind to specifically address the interface between environmental epidemiology and spatio-temporal modeling. In response to the growing need for collaboration between statisticians and
Book Synopsis Spatio-Temporal Statistics with R by : Christopher K. Wikle
Download or read book Spatio-Temporal Statistics with R written by Christopher K. Wikle and published by CRC Press. This book was released on 2019-02-18 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these "big data" that are available are spatio-temporal in nature, meaning that they can be indexed by their spatial locations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modelling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation Provides a gradual entry to the methodological aspects of spatio-temporal statistics Provides broad coverage of using R as well as "R Tips" throughout. Features detailed examples and applications in end-of-chapter Labs Features "Technical Notes" throughout to provide additional technical detail where relevant Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.
Book Synopsis Statistics for Spatio-Temporal Data by : Noel Cressie
Download or read book Statistics for Spatio-Temporal Data written by Noel Cressie and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.
Book Synopsis Spatio–Temporal Methods in Environmental Epidemiology with R by : Gavin Shaddick
Download or read book Spatio–Temporal Methods in Environmental Epidemiology with R written by Gavin Shaddick and published by CRC Press. This book was released on 2023-12-12 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatio-Temporal Methods in Environmental Epidemiology with R, like its First Edition, explores the interface between environmental epidemiology and spatio-temporal modeling. It links recent developments in spatio-temporal theory with epidemiological applications. Drawing on real-life problems, it shows how recent advances in methodology can assess the health risks associated with environmental hazards. The book's clear guidelines enable the implementation of the methodology and estimation of risks in practice. New additions to the Second Edition include: a thorough exploration of the underlying concepts behind knowledge discovery through data; a new chapter on extracting information from data using R and the tidyverse; additional material on methods for Bayesian computation, including the use of NIMBLE and Stan; new methods for performing spatio-temporal analysis and an updated chapter containing further topics. Throughout the book there are new examples, and the presentation of R code for examples has been extended. Along with these additions, the book now has a GitHub site (https://spacetime-environ.github.io/stepi2) that contains data, code and further worked examples. Features: • Explores the interface between environmental epidemiology and spatio-temporal modeling • Incorporates examples that show how spatio-temporal methodology can inform societal concerns about the effects of environmental hazards on health • Uses a Bayesian foundation on which to build an integrated approach to spatio-temporal modeling and environmental epidemiology • Discusses data analysis and topics such as data visualization, mapping, wrangling and analysis • Shows how to design networks for monitoring hazardous environmental processes and the ill effects of preferential sampling • Through the listing and application of code, shows the power of R, tidyverse, NIMBLE and Stan and other modern tools in performing complex data analysis and modeling Representing a continuing important direction in environmental epidemiology, this book – in full color throughout – underscores the increasing need to consider dependencies in both space and time when modeling epidemiological data. Readers will learn how to identify and model patterns in spatio-temporal data and how to exploit dependencies over space and time to reduce bias and inefficiency when estimating risks to health.
Book Synopsis Bayesian Modeling of Spatio-Temporal Data with R by : Sujit Sahu
Download or read book Bayesian Modeling of Spatio-Temporal Data with R written by Sujit Sahu and published by CRC Press. This book was released on 2022-02-23 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied sciences, both physical and social, such as atmospheric, biological, climate, demographic, economic, ecological, environmental, oceanic and political, routinely gather large volumes of spatial and spatio-temporal data in order to make wide ranging inference and prediction. Ideally such inferential tasks should be approached through modelling, which aids in estimation of uncertainties in all conclusions drawn from such data. Unified Bayesian modelling, implemented through user friendly software packages, provides a crucial key to unlocking the full power of these methods for solving challenging practical problems. Key features of the book: • Accessible detailed discussion of a majority of all aspects of Bayesian methods and computations with worked examples, numerical illustrations and exercises • A spatial statistics jargon buster chapter that enables the reader to build up a vocabulary without getting clouded in modeling and technicalities • Computation and modeling illustrations are provided with the help of the dedicated R package bmstdr, allowing the reader to use well-known packages and platforms, such as rstan, INLA, spBayes, spTimer, spTDyn, CARBayes, CARBayesST, etc • Included are R code notes detailing the algorithms used to produce all the tables and figures, with data and code available via an online supplement • Two dedicated chapters discuss practical examples of spatio-temporal modeling of point referenced and areal unit data • Throughout, the emphasis has been on validating models by splitting data into test and training sets following on the philosophy of machine learning and data science This book is designed to make spatio-temporal modeling and analysis accessible and understandable to a wide audience of students and researchers, from mathematicians and statisticians to practitioners in the applied sciences. It presents most of the modeling with the help of R commands written in a purposefully developed R package to facilitate spatio-temporal modeling. It does not compromise on rigour, as it presents the underlying theories of Bayesian inference and computation in standalone chapters, which would be appeal those interested in the theoretical details. By avoiding hard core mathematics and calculus, this book aims to be a bridge that removes the statistical knowledge gap from among the applied scientists.
Book Synopsis Spatial and Spatio-temporal Bayesian Models with R - INLA by : Marta Blangiardo
Download or read book Spatial and Spatio-temporal Bayesian Models with R - INLA written by Marta Blangiardo and published by John Wiley & Sons. This book was released on 2015-06-02 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations
Book Synopsis geoENV III — Geostatistics for Environmental Applications by : Pascal Monestiez
Download or read book geoENV III — Geostatistics for Environmental Applications written by Pascal Monestiez and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains selected contributions from geoENV III - the Third European Conference on Geostatistics for Environmental Sciences, held in Avignon, France in November 2000. This third book of the geoENV series illustrates the new methodological developments in geostatistics, as applied to environmental sciences, which have occurred during the last two years. It also presents a wide variety of practical environmental applications which will be of interest to both researchers and practitioners. The book starts with two keynote papers on hydrogeology and on climatology and atmospheric pollution, followed by forty contributions. The content of this book is foremost practical. The editors have endeavored to compile a set of papers in which the readers could perceive how geostatistics is applied within environmental sciences. A few selected methodological and theoretical contributions are also included. The papers are organised in the following sections: Air Pollution / Climate; Environment; Health / Ecology; Hydrology; Methods; Soil Science / Site Remediation. presenting applications varying from delineation of hazardous areas, monitoring water quality, space-time modeling of sand beaches, areal rainfall estimation, air pollution monitoring, multivariate conditional simulation, soil texture analysis, fish abundance analysis, tree productivity index estimation, radionuclide migration analysis, wombling procedure, tracer tests modeling, direct sequential co-simulation to stochastic modeling of flow and transport. Audience: This publication will be of great interest and practical value to geostatisticians working both in academia and in industry.
Book Synopsis Handbook of Environmental and Ecological Statistics by : Alan E. Gelfand
Download or read book Handbook of Environmental and Ecological Statistics written by Alan E. Gelfand and published by CRC Press. This book was released on 2019-01-15 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes. The 21st century statistics community has become increasingly interdisciplinary, bringing a large collection of modern tools to all areas of application in environmental processes. In addition, the environmental community has substantially increased its scope of data collection including observational data, satellite-derived data, and computer model output. The resultant impact in this latter community has been substantial; no longer are simple regression and analysis of variance methods adequate. The contribution of this handbook is to assemble a state-of-the-art view of this interface. Features: An internationally regarded editorial team. A distinguished collection of contributors. A thoroughly contemporary treatment of a substantial interdisciplinary interface. Written to engage both statisticians as well as quantitative environmental researchers. 34 chapters covering methodology, ecological processes, environmental exposure, and statistical methods in climate science.
Book Synopsis Modeling Spatio-Temporal Data by : Marco A. R. Ferreira
Download or read book Modeling Spatio-Temporal Data written by Marco A. R. Ferreira and published by CRC Press. This book was released on 2024-11-29 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several important topics in spatial and spatio-temporal statistics developed in the last 15 years have not received enough attention in textbooks. Modeling Spatio-Temporal Data: Markov Random Fields, Objectives Bayes, and Multiscale Models aims to fill this gap by providing an overview of a variety of recently proposed approaches for the analysis of spatial and spatio-temporal datasets, including proper Gaussian Markov random fields, dynamic multiscale spatio-temporal models, and objective priors for spatial and spatio-temporal models. The goal is to make these approaches more accessible to practitioners, and to stimulate additional research in these important areas of spatial and spatio-temporal statistics. Key topics: Proper Gaussian Markov random fields and their uses as building blocks for spatio-temporal models and multiscale models. Hierarchical models with intrinsic conditional autoregressive priors for spatial random effects, including reference priors, results on fast computations, and objective Bayes model selection. Objective priors for state-space models and a new approximate reference prior for a spatio-temporal model with dynamic spatio-temporal random effects. Spatio-temporal models based on proper Gaussian Markov random fields for Poisson observations. Dynamic multiscale spatio-temporal thresholding for spatial clustering and data compression. Multiscale spatio-temporal assimilation of computer model output and monitoring station data. Dynamic multiscale heteroscedastic multivariate spatio-temporal models. The M-open multiple optima paradox and some of its practical implications for multiscale modeling. Ensembles of dynamic multiscale spatio-temporal models for smooth spatio-temporal processes. The audience for this book are practitioners, researchers, and graduate students in statistics, data science, machine learning, and related fields. Prerequisites for this book are master's-level courses on statistical inference, linear models, and Bayesian statistics. This book can be used as a textbook for a special topics course on spatial and spatio-temporal statistics, as well as supplementary material for graduate courses on spatial and spatio-temporal modeling.
Book Synopsis Handbook of Mathematical Geosciences by : B.S. Daya Sagar
Download or read book Handbook of Mathematical Geosciences written by B.S. Daya Sagar and published by Springer. This book was released on 2018-06-25 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.
Book Synopsis Bayesian inference with INLA by : Virgilio Gomez-Rubio
Download or read book Bayesian inference with INLA written by Virgilio Gomez-Rubio and published by CRC Press. This book was released on 2020-02-20 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.
Book Synopsis Spatial and Spatio-Temporal Geostatistical Modeling and Kriging by : José-María Montero
Download or read book Spatial and Spatio-Temporal Geostatistical Modeling and Kriging written by José-María Montero and published by John Wiley & Sons. This book was released on 2015-08-18 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Methods for Spatial and Spatio-Temporal Data Analysis provides a complete range of spatio-temporal covariance functions and discusses ways of constructing them. This book is a unified approach to modeling spatial and spatio-temporal data together with significant developments in statistical methodology with applications in R. This book includes: Methods for selecting valid covariance functions from the empirical counterparts that overcome the existing limitations of the traditional methods. The most innovative developments in the different steps of the kriging process. An up-to-date account of strategies for dealing with data evolving in space and time. An accompanying website featuring R code and examples
Book Synopsis Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA by : Elias T. Krainski
Download or read book Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA written by Elias T. Krainski and published by CRC Press. This book was released on 2018-12-07 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.
Book Synopsis Spatio-temporal Design by : Jorge Mateu
Download or read book Spatio-temporal Design written by Jorge Mateu and published by John Wiley & Sons. This book was released on 2012-11-05 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art presentation of optimum spatio-temporal sampling design - bridging classic ideas with modern statistical modeling concepts and the latest computational methods. Spatio-temporal Design presents a comprehensive state-of-the-art presentation combining both classical and modern treatments of network design and planning for spatial and spatio-temporal data acquisition. A common problem set is interwoven throughout the chapters, providing various perspectives to illustrate a complete insight to the problem at hand. Motivated by the high demand for statistical analysis of data that takes spatial and spatio-temporal information into account, this book incorporates ideas from the areas of time series, spatial statistics and stochastic processes, and combines them to discuss optimum spatio-temporal sampling design. Spatio-temporal Design: Advances in Efficient Data Acquisition: Provides an up-to-date account of how to collect space-time data for monitoring, with a focus on statistical aspects and the latest computational methods Discusses basic methods and distinguishes between design and model-based approaches to collecting space-time data. Features model-based frequentist design for univariate and multivariate geostatistics, and second-phase spatial sampling. Integrates common data examples and case studies throughout the book in order to demonstrate the different approaches and their integration. Includes real data sets, data generating mechanisms and simulation scenarios. Accompanied by a supporting website featuring R code. Spatio-temporal Design presents an excellent book for graduate level students as well as a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.
Book Synopsis Hierarchical Modeling and Analysis for Spatial Data by : Sudipto Banerjee
Download or read book Hierarchical Modeling and Analysis for Spatial Data written by Sudipto Banerjee and published by CRC Press. This book was released on 2014-09-12 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keep Up to Date with the Evolving Landscape of Space and Space-Time Data Analysis and ModelingSince the publication of the first edition, the statistical landscape has substantially changed for analyzing space and space-time data. More than twice the size of its predecessor, Hierarchical Modeling and Analysis for Spatial Data, Second Edition reflec
Book Synopsis Gaussian Markov Random Fields by : Havard Rue
Download or read book Gaussian Markov Random Fields written by Havard Rue and published by CRC Press. This book was released on 2005-02-18 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie
Book Synopsis Spatial Econometrics by : J. Paul Elhorst
Download or read book Spatial Econometrics written by J. Paul Elhorst and published by Springer Science & Business Media. This book was released on 2013-09-30 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of three generations of spatial econometric models: models based on cross-sectional data, static models based on spatial panels and dynamic spatial panel data models. The book not only presents different model specifications and their corresponding estimators, but also critically discusses the purposes for which these models can be used and how their results should be interpreted.