Computational Statistics and Applications

Download Computational Statistics and Applications PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1839697822
Total Pages : 207 pages
Book Rating : 4.8/5 (396 download)

DOWNLOAD NOW!


Book Synopsis Computational Statistics and Applications by : Ricardo López-Ruiz

Download or read book Computational Statistics and Applications written by Ricardo López-Ruiz and published by BoD – Books on Demand. This book was released on 2022-04-06 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nature evolves mainly in a statistical way. Different strategies, formulas, and conformations are continuously confronted in the natural processes. Some of them are selected and then the evolution continues with a new loop of confrontation for the next generation of phenomena and living beings. Failings are corrected without a previous program or design. The new options generated by different statistical and random scenarios lead to solutions for surviving the present conditions. This is the general panorama for all scrutiny levels of the life cycles. Over three sections, this book examines different statistical questions and techniques in the context of machine learning and clustering methods, the frailty models used in survival analysis, and other studies of statistics applied to diverse problems.

Statistics for High-Dimensional Data

Download Statistics for High-Dimensional Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364220192X
Total Pages : 568 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Statistics for High-Dimensional Data by : Peter Bühlmann

Download or read book Statistics for High-Dimensional Data written by Peter Bühlmann and published by Springer Science & Business Media. This book was released on 2011-06-08 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Metric Learning

Download Metric Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303101572X
Total Pages : 139 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Metric Learning by : Aurélien Muise

Download or read book Metric Learning written by Aurélien Muise and published by Springer Nature. This book was released on 2022-05-31 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data. We first introduce relevant definitions and classic metric functions, as well as examples of their use in machine learning and data mining. We then review a wide range of metric learning algorithms, starting with the simple setting of linear distance and similarity learning. We show how one may scale-up these methods to very large amounts of training data. To go beyond the linear case, we discuss methods that learn nonlinear metrics or multiple linear metrics throughout the feature space, and review methods for more complex settings such as multi-task and semi-supervised learning. Although most of the existing work has focused on numerical data, we cover the literature on metric learning for structured data like strings, trees, graphs and time series. In the more technical part of the book, we present some recent statistical frameworks for analyzing the generalization performance in metric learning and derive results for some of the algorithms presented earlier. Finally, we illustrate the relevance of metric learning in real-world problems through a series of successful applications to computer vision, bioinformatics and information retrieval. Table of Contents: Introduction / Metrics / Properties of Metric Learning Algorithms / Linear Metric Learning / Nonlinear and Local Metric Learning / Metric Learning for Special Settings / Metric Learning for Structured Data / Generalization Guarantees for Metric Learning / Applications / Conclusion / Bibliography / Authors' Biographies

Deep Learning through Sparse and Low-Rank Modeling

Download Deep Learning through Sparse and Low-Rank Modeling PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128136596
Total Pages : 296 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning through Sparse and Low-Rank Modeling by : Zhangyang Wang

Download or read book Deep Learning through Sparse and Low-Rank Modeling written by Zhangyang Wang and published by Academic Press. This book was released on 2019-04-12 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.

Machine Intelligence in Design Automation

Download Machine Intelligence in Design Automation PDF Online Free

Author :
Publisher :
ISBN 13 : 9781980554356
Total Pages : 219 pages
Book Rating : 4.5/5 (543 download)

DOWNLOAD NOW!


Book Synopsis Machine Intelligence in Design Automation by : Rohit Sharma

Download or read book Machine Intelligence in Design Automation written by Rohit Sharma and published by . This book was released on 2018-03-13 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a hands-on approach for solving electronic design automation problems with modern machine intelligence techniques by including step-by-step development of commercial grade design applications including resistance estimation, capacitance estimation, cell classification and others using dataset extracted from designs at 20nm. It walks the reader step by step in building solution flow for EDA problems with Python and Tensorflow.Intended audience includes design automation engineers, managers, executives, research professionals, graduate students, Machine learning enthusiasts, EDA and CAD developers, mentors, and the merely inquisitive. It is organized to serve as a compendium to a beginner, a ready reference to intermediate and source for an expert.

Statistical Learning with Sparsity

Download Statistical Learning with Sparsity PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498712177
Total Pages : 354 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Statistical Learning with Sparsity by : Trevor Hastie

Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

High-Dimensional Statistics

Download High-Dimensional Statistics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108498027
Total Pages : 571 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Statistics by : Martin J. Wainwright

Download or read book High-Dimensional Statistics written by Martin J. Wainwright and published by Cambridge University Press. This book was released on 2019-02-21 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.

Hands-On Machine Learning with R

Download Hands-On Machine Learning with R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730433
Total Pages : 373 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Machine Learning with R by : Brad Boehmke

Download or read book Hands-On Machine Learning with R written by Brad Boehmke and published by CRC Press. This book was released on 2019-11-07 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.

Proceedings of the Fourth SIAM International Conference on Data Mining

Download Proceedings of the Fourth SIAM International Conference on Data Mining PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9780898715682
Total Pages : 556 pages
Book Rating : 4.7/5 (156 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the Fourth SIAM International Conference on Data Mining by : Michael W. Berry

Download or read book Proceedings of the Fourth SIAM International Conference on Data Mining written by Michael W. Berry and published by SIAM. This book was released on 2004-01-01 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. This is reflected in the talks by the four keynote speakers who discuss data usability issues in systems for data mining in science and engineering, issues raised by new technologies that generate biological data, ways to find complex structured patterns in linked data, and advances in Bayesian inference techniques. This proceedings includes 61 research papers.

Nonlinear Estimation and Classification

Download Nonlinear Estimation and Classification PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387215794
Total Pages : 465 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Estimation and Classification by : David D. Denison

Download or read book Nonlinear Estimation and Classification written by David D. Denison and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Researchers in many disciplines face the formidable task of analyzing massive amounts of high-dimensional and highly-structured data. This is due in part to recent advances in data collection and computing technologies. As a result, fundamental statistical research is being undertaken in a variety of different fields. Driven by the complexity of these new problems, and fueled by the explosion of available computer power, highly adaptive, non-linear procedures are now essential components of modern "data analysis," a term that we liberally interpret to include speech and pattern recognition, classification, data compression and signal processing. The development of new, flexible methods combines advances from many sources, including approximation theory, numerical analysis, machine learning, signal processing and statistics. The proposed workshop intends to bring together eminent experts from these fields in order to exchange ideas and forge directions for the future.

Computational Psychometrics: New Methodologies for a New Generation of Digital Learning and Assessment

Download Computational Psychometrics: New Methodologies for a New Generation of Digital Learning and Assessment PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030743942
Total Pages : 265 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Computational Psychometrics: New Methodologies for a New Generation of Digital Learning and Assessment by : Alina A. von Davier

Download or read book Computational Psychometrics: New Methodologies for a New Generation of Digital Learning and Assessment written by Alina A. von Davier and published by Springer Nature. This book was released on 2022-01-01 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book defines and describes a new discipline, named “computational psychometrics,” from the perspective of new methodologies for handling complex data from digital learning and assessment. The editors and the contributing authors discuss how new technology drastically increases the possibilities for the design and administration of learning and assessment systems, and how doing so significantly increases the variety, velocity, and volume of the resulting data. Then they introduce methods and strategies to address the new challenges, ranging from evidence identification and data modeling to the assessment and prediction of learners’ performance in complex settings, as in collaborative tasks, game/simulation-based tasks, and multimodal learning and assessment tasks. Computational psychometrics has thus been defined as a blend of theory-based psychometrics and data-driven approaches from machine learning, artificial intelligence, and data science. All these together provide a better methodological framework for analysing complex data from digital learning and assessments. The term “computational” has been widely adopted by many other areas, as with computational statistics, computational linguistics, and computational economics. In those contexts, “computational” has a meaning similar to the one proposed in this book: a data-driven and algorithm-focused perspective on foundations and theoretical approaches established previously, now extended and, when necessary, reconceived. This interdisciplinarity is already a proven success in many disciplines, from personalized medicine that uses computational statistics to personalized learning that uses, well, computational psychometrics. We expect that this volume will be of interest not just within but beyond the psychometric community. In this volume, experts in psychometrics, machine learning, artificial intelligence, data science and natural language processing illustrate their work, showing how the interdisciplinary expertise of each researcher blends into a coherent methodological framework to deal with complex data from complex virtual interfaces. In the chapters focusing on methodologies, the authors use real data examples to demonstrate how to implement the new methods in practice. The corresponding programming codes in R and Python have been included as snippets in the book and are also available in fuller form in the GitHub code repository that accompanies the book.

Machine Learning

Download Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262304325
Total Pages : 1102 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning by : Kevin P. Murphy

Download or read book Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2012-09-07 with total page 1102 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Machine Learning Under a Modern Optimization Lens

Download Machine Learning Under a Modern Optimization Lens PDF Online Free

Author :
Publisher :
ISBN 13 : 9781733788502
Total Pages : 589 pages
Book Rating : 4.7/5 (885 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Under a Modern Optimization Lens by : Dimitris Bertsimas

Download or read book Machine Learning Under a Modern Optimization Lens written by Dimitris Bertsimas and published by . This book was released on 2019 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Data Science

Download Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819959683
Total Pages : 508 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Data Science by : Zhiwen Yu

Download or read book Data Science written by Zhiwen Yu and published by Springer Nature. This book was released on 2023-09-14 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set (CCIS 1879 and 1880) constitutes the refereed proceedings of the 9th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2023 held in Harbin, China, during September 22–24, 2023. The 52 full papers and 14 short papers presented in these two volumes were carefully reviewed and selected from 244 submissions. The papers are organized in the following topical sections: Part I: Applications of Data Science, Big Data Management and Applications, Big Data Mining and Knowledge Management, Data Visualization, Data-driven Security, Infrastructure for Data Science, Machine Learning for Data Science and Multimedia Data Management and Analysis. Part II: Data-driven Healthcare, Data-driven Smart City/Planet, Social Media and Recommendation Systems and Education using big data, intelligent computing or data mining, etc.

Machine Learning for Algorithmic Trading

Download Machine Learning for Algorithmic Trading PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839216786
Total Pages : 822 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Algorithmic Trading by : Stefan Jansen

Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Extended Abstracts Fall 2015

Download Extended Abstracts Fall 2015 PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319556398
Total Pages : 129 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Extended Abstracts Fall 2015 by : Elizabeth A. Ainsbury

Download or read book Extended Abstracts Fall 2015 written by Elizabeth A. Ainsbury and published by Birkhäuser. This book was released on 2017-05-05 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-part volume gathers extended conference abstracts corresponding to selected talks from the "Biostatnet workshop on Biomedical (Big) Data" and from the "DoReMi LD-RadStats: Workshop for statisticians interested in contributing to EU low dose radiation research", which were held at the Centre de Recerca Matemàtica (CRM) in Barcelona from November 26th to 27th, 2015, and at the Institut de Salut Global ISGlobal (former CREAL) from October 26th to 28th, 2015, respectively. Most of the contributions are brief articles, presenting preliminary new results not yet published in regular research journals. The first part is devoted to the challenges of analyzing so called "Biomedical Big Data", tremendous amounts of biomedical and health data that are generated every day due to the use of recent technological advances such as massive genomic sequencing, electronic health records or high-resolution medical imaging, among others. The analysis of this information poses significant challenges for researchers in the fields of biostatistics, bioinformatics, and signal processing. Furthermore, other relevant challenges in biostatistical research, not necessarily involving big data, are also discussed. In turn, the second part is dedicated to low dose radiation research, where there is a need to fully understand and characterize potential sources of uncertainty before they can be reduced. Further, the book demonstrates why formal uncertainty analysis has the potential to provide a common platform for multidisciplinary research in this field. This book is intended for established researchers, as well as for PhD and postdoctoral students who want to learn more about the latest advances in these highly active areas of research.

Machine Learning and Data Science Blueprints for Finance

Download Machine Learning and Data Science Blueprints for Finance PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492073008
Total Pages : 432 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Science Blueprints for Finance by : Hariom Tatsat

Download or read book Machine Learning and Data Science Blueprints for Finance written by Hariom Tatsat and published by "O'Reilly Media, Inc.". This book was released on 2020-10-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations