Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Some Contributions To Bayesian Nonparametric Statistical Inference
Download Some Contributions To Bayesian Nonparametric Statistical Inference full books in PDF, epub, and Kindle. Read online Some Contributions To Bayesian Nonparametric Statistical Inference ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Bayesian Nonparametric Data Analysis by : Peter Müller
Download or read book Bayesian Nonparametric Data Analysis written by Peter Müller and published by Springer. This book was released on 2015-06-17 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.
Book Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo
Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Book Synopsis Statistical Inference by : Murray Aitkin
Download or read book Statistical Inference written by Murray Aitkin and published by CRC Press. This book was released on 2010-06-02 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct
Book Synopsis Nonparametric Statistical Inference by : Jean Dickinson Gibbons
Download or read book Nonparametric Statistical Inference written by Jean Dickinson Gibbons and published by CRC Press. This book was released on 2010-07-26 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proven Material for a Course on the Introduction to the Theory and/or on the Applications of Classical Nonparametric Methods Since its first publication in 1971, Nonparametric Statistical Inference has been widely regarded as the source for learning about nonparametric statistics. The fifth edition carries on this tradition while thoroughly revising at least 50 percent of the material. New to the Fifth Edition Updated and revised contents based on recent journal articles in the literature A new section in the chapter on goodness-of-fit tests A new chapter that offers practical guidance on how to choose among the various nonparametric procedures covered Additional problems and examples Improved computer figures This classic, best-selling statistics book continues to cover the most commonly used nonparametric procedures. The authors carefully state the assumptions, develop the theory behind the procedures, and illustrate the techniques using realistic research examples from the social, behavioral, and life sciences. For most procedures, they present the tests of hypotheses, confidence interval estimation, sample size determination, power, and comparisons of other relevant procedures. The text also gives examples of computer applications based on Minitab, SAS, and StatXact and compares these examples with corresponding hand calculations. The appendix includes a collection of tables required for solving the data-oriented problems. Nonparametric Statistical Inference, Fifth Edition provides in-depth yet accessible coverage of the theory and methods of nonparametric statistical inference procedures. It takes a practical approach that draws on scores of examples and problems and minimizes the theorem-proof format. Jean Dickinson Gibbons was recently interviewed regarding her generous pledge to Virginia Tech.
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Book Synopsis Fundamentals of Nonparametric Bayesian Inference by : Subhashis Ghosal
Download or read book Fundamentals of Nonparametric Bayesian Inference written by Subhashis Ghosal and published by Cambridge University Press. This book was released on 2017-06-26 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.
Book Synopsis Computer Age Statistical Inference by : Bradley Efron
Download or read book Computer Age Statistical Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2016-07-21 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Book Synopsis Bayesian Nonparametrics by : J.K. Ghosh
Download or read book Bayesian Nonparametrics written by J.K. Ghosh and published by Springer Science & Business Media. This book was released on 2006-05-11 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.
Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman
Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Book Synopsis Bayesian Theory and Applications by : Paul Damien
Download or read book Bayesian Theory and Applications written by Paul Damien and published by Oxford University Press. This book was released on 2013-01-24 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.
Book Synopsis The Contribution of Young Researchers to Bayesian Statistics by : Ettore Lanzarone
Download or read book The Contribution of Young Researchers to Bayesian Statistics written by Ettore Lanzarone and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first Bayesian Young Statisticians Meeting, BAYSM 2013, has provided a unique opportunity for young researchers, M.S. students, Ph.D. students, and post-docs dealing with Bayesian statistics to connect with the Bayesian community at large, exchange ideas, and network with scholars working in their field. The Workshop, which took place June 5th and 6th 2013 at CNR-IMATI, Milan, has promoted further research in all the fields where Bayesian statistics may be employed under the guidance of renowned plenary lecturers and senior discussants. A selection of the contributions to the meeting and the summary of one of the plenary lectures compose this volume.
Book Synopsis Frontiers of Statistical Decision Making and Bayesian Analysis by : Ming-Hui Chen
Download or read book Frontiers of Statistical Decision Making and Bayesian Analysis written by Ming-Hui Chen and published by Springer Science & Business Media. This book was released on 2010-07-24 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.
Book Synopsis All of Statistics by : Larry Wasserman
Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Book Synopsis Principles of Statistical Inference by : D. R. Cox
Download or read book Principles of Statistical Inference written by D. R. Cox and published by Cambridge University Press. This book was released on 2006-08-10 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses.
Book Synopsis Nonparametric Bayesian Inference by : Jean-Pierre Florens
Download or read book Nonparametric Bayesian Inference written by Jean-Pierre Florens and published by Springer Nature. This book was released on with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Probability and Statistical Inference by : Robert Bartoszynski
Download or read book Probability and Statistical Inference written by Robert Bartoszynski and published by John Wiley & Sons. This book was released on 2007-11-16 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now updated in a valuable new edition—this user-friendly book focuses on understanding the "why" of mathematical statistics Probability and Statistical Inference, Second Edition introduces key probability and statis-tical concepts through non-trivial, real-world examples and promotes the developmentof intuition rather than simple application. With its coverage of the recent advancements in computer-intensive methods, this update successfully provides the comp-rehensive tools needed to develop a broad understanding of the theory of statisticsand its probabilistic foundations. This outstanding new edition continues to encouragereaders to recognize and fully understand the why, not just the how, behind the concepts,theorems, and methods of statistics. Clear explanations are presented and appliedto various examples that help to impart a deeper understanding of theorems and methods—from fundamental statistical concepts to computational details. Additional features of this Second Edition include: A new chapter on random samples Coverage of computer-intensive techniques in statistical inference featuring Monte Carlo and resampling methods, such as bootstrap and permutation tests, bootstrap confidence intervals with supporting R codes, and additional examples available via the book's FTP site Treatment of survival and hazard function, methods of obtaining estimators, and Bayes estimating Real-world examples that illuminate presented concepts Exercises at the end of each section Providing a straightforward, contemporary approach to modern-day statistical applications, Probability and Statistical Inference, Second Edition is an ideal text for advanced undergraduate- and graduate-level courses in probability and statistical inference. It also serves as a valuable reference for practitioners in any discipline who wish to gain further insight into the latest statistical tools.
Book Synopsis Bayesian Nonparametrics by : Nils Lid Hjort
Download or read book Bayesian Nonparametrics written by Nils Lid Hjort and published by Cambridge University Press. This book was released on 2010-04-12 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.