Solving Differential Equations by Multistep Initial and Boundary Value Methods

Download Solving Differential Equations by Multistep Initial and Boundary Value Methods PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9789056991074
Total Pages : 438 pages
Book Rating : 4.9/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Solving Differential Equations by Multistep Initial and Boundary Value Methods by : L Brugnano

Download or read book Solving Differential Equations by Multistep Initial and Boundary Value Methods written by L Brugnano and published by CRC Press. This book was released on 1998-05-22 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical approximation of solutions of differential equations has been, and continues to be, one of the principal concerns of numerical analysis and is an active area of research. The new generation of parallel computers have provoked a reconsideration of numerical methods. This book aims to generalize classical multistep methods for both initial and boundary value problems; to present a self-contained theory which embraces and generalizes the classical Dahlquist theory; to treat nonclassical problems, such as Hamiltonian problems and the mesh selection; and to select appropriate methods for a general purpose software capable of solving a wide range of problems efficiently, even on parallel computers.

Numerical Methods for Initial Value Problems in Ordinary Differential Equations

Download Numerical Methods for Initial Value Problems in Ordinary Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 320 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Initial Value Problems in Ordinary Differential Equations by : Simeon Ola Fatunla

Download or read book Numerical Methods for Initial Value Problems in Ordinary Differential Equations written by Simeon Ola Fatunla and published by . This book was released on 1988 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Numerical Solution of Initial-value Problems in Differential-algebraic Equations

Download Numerical Solution of Initial-value Problems in Differential-algebraic Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611971224
Total Pages : 268 pages
Book Rating : 4.9/5 (712 download)

DOWNLOAD NOW!


Book Synopsis Numerical Solution of Initial-value Problems in Differential-algebraic Equations by : K. E. Brenan

Download or read book Numerical Solution of Initial-value Problems in Differential-algebraic Equations written by K. E. Brenan and published by SIAM. This book was released on 1996-01-01 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical problems are most naturally described by systems of differential and algebraic equations. This book describes some of the places where differential-algebraic equations (DAE's) occur. The basic mathematical theory for these equations is developed and numerical methods are presented and analyzed. Examples drawn from a variety of applications are used to motivate and illustrate the concepts and techniques. This classic edition, originally published in 1989, is the only general DAE book available. It not only develops guidelines for choosing different numerical methods, it is the first book to discuss DAE codes, including the popular DASSL code. An extensive discussion of backward differentiation formulas details why they have emerged as the most popular and best understood class of linear multistep methods for general DAE's. New to this edition is a chapter that brings the discussion of DAE software up to date. The objective of this monograph is to advance and consolidate the existing research results for the numerical solution of DAE's. The authors present results on the analysis of numerical methods, and also show how these results are relevant for the solution of problems from applications. They develop guidelines for problem formulation and effective use of the available mathematical software and provide extensive references for further study.

Solving Differential Equations in R

Download Solving Differential Equations in R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642280706
Total Pages : 258 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Solving Differential Equations in R by : Karline Soetaert

Download or read book Solving Differential Equations in R written by Karline Soetaert and published by Springer Science & Business Media. This book was released on 2012-06-06 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics plays an important role in many scientific and engineering disciplines. This book deals with the numerical solution of differential equations, a very important branch of mathematics. Our aim is to give a practical and theoretical account of how to solve a large variety of differential equations, comprising ordinary differential equations, initial value problems and boundary value problems, differential algebraic equations, partial differential equations and delay differential equations. The solution of differential equations using R is the main focus of this book. It is therefore intended for the practitioner, the student and the scientist, who wants to know how to use R for solving differential equations. However, it has been our goal that non-mathematicians should at least understand the basics of the methods, while obtaining entrance into the relevant literature that provides more mathematical background. Therefore, each chapter that deals with R examples is preceded by a chapter where the theory behind the numerical methods being used is introduced. In the sections that deal with the use of R for solving differential equations, we have taken examples from a variety of disciplines, including biology, chemistry, physics, pharmacokinetics. Many examples are well-known test examples, used frequently in the field of numerical analysis.

Numerical Solution of Ordinary Differential Equations

Download Numerical Solution of Ordinary Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118164520
Total Pages : 272 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Numerical Solution of Ordinary Differential Equations by : Kendall Atkinson

Download or read book Numerical Solution of Ordinary Differential Equations written by Kendall Atkinson and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Differential Equations with Boundary-value Problems

Download Differential Equations with Boundary-value Problems PDF Online Free

Author :
Publisher :
ISBN 13 : 9780534420741
Total Pages : 619 pages
Book Rating : 4.4/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Differential Equations with Boundary-value Problems by : Dennis G. Zill

Download or read book Differential Equations with Boundary-value Problems written by Dennis G. Zill and published by . This book was released on 2005 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now enhanced with the innovative DE Tools CD-ROM and the iLrn teaching and learning system, this proven text explains the "how" behind the material and strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This accessible text speaks to students through a wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. This book was written with the student's understanding firmly in mind. Using a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations.

Ordinary Differential Equations and Integral Equations

Download Ordinary Differential Equations and Integral Equations PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 9780444506009
Total Pages : 562 pages
Book Rating : 4.5/5 (6 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations and Integral Equations by : C.T.H. Baker

Download or read book Ordinary Differential Equations and Integral Equations written by C.T.H. Baker and published by Gulf Professional Publishing. This book was released on 2001-07-04 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods). John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?" Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices. The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour. Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems. Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions. Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions. Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods. Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory. Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages. Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields. Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems. Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems. Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems. Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions. The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect. Many phenomena incorporate noise, and the numerical solution of stochastic differential equations has developed as a relatively new item of study in the area. Keven Burrage, Pamela Burrage and Taketomo Mitsui review the way numerical methods for solving stochastic differential equations (SDE's) are constructed. One of the more recent areas to attract scrutiny has been the area of differential equations with after-effect (retarded, delay, or neutral delay differential equations) and in this volume we include a number of papers on evolutionary problems in this area. The paper of Genna Bocharov and Fathalla Rihan conveys the importance in mathematical biology of models using retarded differential equations. The contribution by Christopher Baker is intended to convey much of the background necessary for the application of numerical methods and includes some original results on stability and on the solution of approximating equations. Alfredo Bellen, Nicola Guglielmi and Marino Zennaro contribute to the analysis of stability of numerical solutions of nonlinear neutral differential equations. Koen Engelborghs, Tatyana Luzyanina, Dirk Roose, Neville Ford and Volker Wulf consider the numerics of bifurcation in delay differential equations. Evelyn Buckwar contributes a paper indicating the construction and analysis of a numerical strategy for stochastic delay differential equations (SDDEs). This volume contains contributions on both Volterra and Fredholm-type integral equations. Christopher Baker responded to a late challenge to craft a review of the theory of the basic numerics of Volterra integral and integro-differential equations. Simon Shaw and John Whiteman discuss Galerkin methods for a type of Volterra integral equation that arises in modelling viscoelasticity. A subclass of boundary-value problems for ordinary differential equation comprises eigenvalue problems such as Sturm-Liouville problems (SLP) and Schrödinger equations. Liviu Ixaru describes the advances made over the last three decades in the field of piecewise perturbation methods for the numerical solution of Sturm-Liouville problems in general and systems of Schrödinger equations in particular. Alan Andrew surveys the asymptotic correction method for regular Sturm-Liouville problems. Leon Greenberg and Marco Marletta survey methods for higher-order Sturm-Liouville problems. R. Moore in the 1960s first showed the feasibility of validated solutions of differential equations, that is, of computing guaranteed enclosures of solutions. Boundary integral equations. Numerical solution of integral equations associated with boundary-value problems has experienced continuing interest. Peter Junghanns and Bernd Silbermann present a selection of modern results concerning the numerical analysis of one-dimensional Cauchy singular integral equations, in particular the stability of operator sequences associated with different projection methods. Johannes Elschner and Ivan Graham summarize the most important results achieved in the last years about the numerical solution of one-dimensional integral equations of Mellin type of means of projection methods and, in particular, by collocation methods. A survey of results on quadrature methods for solving boundary integral equations is presented by Andreas Rathsfeld. Wolfgang Hackbusch and Boris Khoromski present a novel approach for a very efficient treatment of integral operators. Ernst Stephan examines multilevel methods for the h-, p- and hp- versions of the boundary element method, including pre-conditioning techniques. George Hsiao, Olaf Steinbach and Wolfgang Wendland analyze various boundary element methods employed in local discretization schemes.

Fractals and Fractional Calculus in Continuum Mechanics

Download Fractals and Fractional Calculus in Continuum Mechanics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3709126649
Total Pages : 352 pages
Book Rating : 4.7/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Fractals and Fractional Calculus in Continuum Mechanics by : Alberto Carpinteri

Download or read book Fractals and Fractional Calculus in Continuum Mechanics written by Alberto Carpinteri and published by Springer. This book was released on 2014-05-04 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is characterized by the illustration of cases of fractal, self-similar and multi-scale structures taken from the mechanics of solid and porous materials, which have a technical interest. In addition, an accessible and self-consistent treatment of the mathematical technique of fractional calculus is provided, avoiding useless complications.

Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017)

Download Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811372799
Total Pages : 566 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) by : Liew-Kee Kor

Download or read book Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) written by Liew-Kee Kor and published by Springer. This book was released on 2019-03-27 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a product of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) to be held in Langkawi in November 2017. It is divided into four sections according to the thrust areas: Computer Science, Mathematics, Statistics, and Multidisciplinary Applications. All sections sought to confront current issues that society faces today. The book brings collectively quantitative, as well as qualitative, research methods that are also suitable for future research undertakings. Researchers in Computer Science, Mathematics and Statistics can use this book as a sourcebook to enrich their research works.

Solving ODEs with MATLAB

Download Solving ODEs with MATLAB PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521530941
Total Pages : 276 pages
Book Rating : 4.5/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Solving ODEs with MATLAB by : Lawrence F. Shampine

Download or read book Solving ODEs with MATLAB written by Lawrence F. Shampine and published by Cambridge University Press. This book was released on 2003-04-28 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.

Almost Periodic Solutions of Differential Equations in Banach Spaces

Download Almost Periodic Solutions of Differential Equations in Banach Spaces PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482263165
Total Pages : 258 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Almost Periodic Solutions of Differential Equations in Banach Spaces by : Yoshiyuki Hino

Download or read book Almost Periodic Solutions of Differential Equations in Banach Spaces written by Yoshiyuki Hino and published by CRC Press. This book was released on 2001-10-25 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents recent developments in spectral conditions for the existence of periodic and almost periodic solutions of inhomogenous equations in Banach Spaces. Many of the results represent significant advances in this area. In particular, the authors systematically present a new approach based on the so-called evolution semigroups with

Applied Mechanics Reviews

Download Applied Mechanics Reviews PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 742 pages
Book Rating : 4.:/5 (26 download)

DOWNLOAD NOW!


Book Synopsis Applied Mechanics Reviews by :

Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1967 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Numerical Analysis and Its Applications

Download Numerical Analysis and Its Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540625988
Total Pages : 628 pages
Book Rating : 4.6/5 (259 download)

DOWNLOAD NOW!


Book Synopsis Numerical Analysis and Its Applications by : Lubin Vulkov

Download or read book Numerical Analysis and Its Applications written by Lubin Vulkov and published by Springer Science & Business Media. This book was released on 1997-02-26 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Workshop on Numerical Analysis and Its Applications, WNAA'96, held in Rousse, Bulgaria, in June 1996. The 57 revised full papers presented were carefully selected and reviewed for inclusion in the volume; also included are 14 invited presentations. All in all, the book offers a wealth of new results and methods of numerical analysis applicable in computational science, particularly in computational physics and chemistry. The volume reflects that the cooperation of computer scientists, mathematicians and scientists provides new numerical tools for computational scientists and, at the same time, stimulates numerical analysis.

Elementary Differential Equations and Boundary Value Problems

Download Elementary Differential Equations and Boundary Value Problems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119443768
Total Pages : 623 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Elementary Differential Equations and Boundary Value Problems by : William E. Boyce

Download or read book Elementary Differential Equations and Boundary Value Problems written by William E. Boyce and published by John Wiley & Sons. This book was released on 2017-08-21 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students. The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal two or three semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.

Applied Scientific Computing

Download Applied Scientific Computing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319895753
Total Pages : 280 pages
Book Rating : 4.3/5 (198 download)

DOWNLOAD NOW!


Book Synopsis Applied Scientific Computing by : Peter R. Turner

Download or read book Applied Scientific Computing written by Peter R. Turner and published by Springer. This book was released on 2018-07-18 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This easy-to-understand textbook presents a modern approach to learning numerical methods (or scientific computing), with a unique focus on the modeling and applications of the mathematical content. Emphasis is placed on the need for, and methods of, scientific computing for a range of different types of problems, supplying the evidence and justification to motivate the reader. Practical guidance on coding the methods is also provided, through simple-to-follow examples using Python. Topics and features: provides an accessible and applications-oriented approach, supported by working Python code for many of the methods; encourages both problem- and project-based learning through extensive examples, exercises, and projects drawn from practical applications; introduces the main concepts in modeling, python programming, number representation, and errors; explains the essential details of numerical calculus, linear, and nonlinear equations, including the multivariable Newton method; discusses interpolation and the numerical solution of differential equations, covering polynomial interpolation, splines, and the Euler, Runge–Kutta, and shooting methods; presents largely self-contained chapters, arranged in a logical order suitable for an introductory course on scientific computing. Undergraduate students embarking on a first course on numerical methods or scientific computing will find this textbook to be an invaluable guide to the field, and to the application of these methods across such varied disciplines as computer science, engineering, mathematics, economics, the physical sciences, and social science.

Dichotomies and Stability in Nonautonomous Linear Systems

Download Dichotomies and Stability in Nonautonomous Linear Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780415272216
Total Pages : 394 pages
Book Rating : 4.2/5 (722 download)

DOWNLOAD NOW!


Book Synopsis Dichotomies and Stability in Nonautonomous Linear Systems by : Yu. A. Mitropolsky

Download or read book Dichotomies and Stability in Nonautonomous Linear Systems written by Yu. A. Mitropolsky and published by CRC Press. This book was released on 2002-10-10 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov functions with variable sign, expressed in quadratic forms, to the solution of this problem. The authors explore the preservation of invariant tori of dynamic systems under perturbation. This volume is a classic contribution to the literature on stability theory and provides a useful source of reference for postgraduates and researchers.

Advanced Mathematics for Engineers and Scientists

Download Advanced Mathematics for Engineers and Scientists PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486479307
Total Pages : 401 pages
Book Rating : 4.4/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Advanced Mathematics for Engineers and Scientists by : Paul DuChateau

Download or read book Advanced Mathematics for Engineers and Scientists written by Paul DuChateau and published by Courier Corporation. This book was released on 2011-01-01 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This Dover edition, first published in 2011, is an unabridged republication of the work originally published in 1992 by HarperCollins Publishers, Inc., New York."