Solutions Of Nonlinear Differential Equations: Existence Results Via The Variational Approach

Download Solutions Of Nonlinear Differential Equations: Existence Results Via The Variational Approach PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813108622
Total Pages : 362 pages
Book Rating : 4.8/5 (131 download)

DOWNLOAD NOW!


Book Synopsis Solutions Of Nonlinear Differential Equations: Existence Results Via The Variational Approach by : Lin Li

Download or read book Solutions Of Nonlinear Differential Equations: Existence Results Via The Variational Approach written by Lin Li and published by World Scientific. This book was released on 2016-04-15 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational methods are very powerful techniques in nonlinear analysis and are extensively used in many disciplines of pure and applied mathematics (including ordinary and partial differential equations, mathematical physics, gauge theory, and geometrical analysis).In our first chapter, we gather the basic notions and fundamental theorems that will be applied throughout the chapters. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with how variational methods can be used in fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. A very extensive bibliography is also included.

Semilinear Elliptic Equations for Beginners

Download Semilinear Elliptic Equations for Beginners PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0857292277
Total Pages : 204 pages
Book Rating : 4.8/5 (572 download)

DOWNLOAD NOW!


Book Synopsis Semilinear Elliptic Equations for Beginners by : Marino Badiale

Download or read book Semilinear Elliptic Equations for Beginners written by Marino Badiale and published by Springer Science & Business Media. This book was released on 2010-12-07 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semilinear elliptic equations are of fundamental importance for the study of geometry, physics, mechanics, engineering and life sciences. The variational approach to these equations has experienced spectacular success in recent years, reaching a high level of complexity and refinement, with a multitude of applications. Additionally, some of the simplest variational methods are evolving as classical tools in the field of nonlinear differential equations. This book is an introduction to variational methods and their applications to semilinear elliptic problems. Providing a comprehensive overview on the subject, this book will support both student and teacher engaged in a first course in nonlinear elliptic equations. The material is introduced gradually, and in some cases redundancy is added to stress the fundamental steps in theory-building. Topics include differential calculus for functionals, linear theory, and existence theorems by minimization techniques and min-max procedures. Requiring a basic knowledge of Analysis, Functional Analysis and the most common function spaces, such as Lebesgue and Sobolev spaces, this book will be of primary use to graduate students based in the field of nonlinear partial differential equations. It will also serve as valuable reading for final year undergraduates seeking to learn about basic working tools from variational methods and the management of certain types of nonlinear problems.

Solutions of Nonlinear Differential Equations

Download Solutions of Nonlinear Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 : 9789813108615
Total Pages : 347 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Solutions of Nonlinear Differential Equations by : Lin Li (Mathematics professor)

Download or read book Solutions of Nonlinear Differential Equations written by Lin Li (Mathematics professor) and published by . This book was released on 2016 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational methods are very powerful techniques in nonlinear analysis and are extensively used in many disciplines of pure and applied mathematics (including ordinary and partial differential equations, mathematical physics, gauge theory, and geometrical analysis).In our first chapter, we gather the basic notions and fundamental theorems that will be applied throughout the chapters. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with how variational methods can be used in fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. A very extensive bibliography is also included.Contents:PrefaceSome Notations and ConventionsPreliminaries and Variational PrinciplesQuasilinear Fourth-Order ProblemsKirchhoff ProblemsNonlinear Field ProblemsGradient SystemsVariable Exponent ProblemsReadership: Graduate students and researchers interested in variational methods.Key Features:Each section contains supplementary comments and bibliographical notesThe style and the choice of the material make it accessible to all newcomers to the fieldThere is a rich bibliography and an index to aid the reader

Multiple Solutions Of Boundary Value Problems: A Variational Approach

Download Multiple Solutions Of Boundary Value Problems: A Variational Approach PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814696560
Total Pages : 290 pages
Book Rating : 4.8/5 (146 download)

DOWNLOAD NOW!


Book Synopsis Multiple Solutions Of Boundary Value Problems: A Variational Approach by : John R Graef

Download or read book Multiple Solutions Of Boundary Value Problems: A Variational Approach written by John R Graef and published by World Scientific. This book was released on 2015-08-26 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational methods and their generalizations have been verified to be useful tools in proving the existence of solutions to a variety of boundary value problems for ordinary, impulsive, and partial differential equations as well as for difference equations. In this monograph, we look at how variational methods can be used in all these settings. In our first chapter, we gather the basic notions and fundamental theorems that will be applied in the remainder of this monograph. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with the Sturm-Liouville problems, multi-point boundary value problems, problems with impulses, partial differential equations, and difference equations. An extensive bibliography is also included.

Boundary Value Problems For Fractional Differential Equations And Systems

Download Boundary Value Problems For Fractional Differential Equations And Systems PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811224471
Total Pages : 468 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Boundary Value Problems For Fractional Differential Equations And Systems by : Bashir Ahmad

Download or read book Boundary Value Problems For Fractional Differential Equations And Systems written by Bashir Ahmad and published by World Scientific. This book was released on 2021-02-18 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of existence of solutions or positive solutions for various classes of Riemann-Liouville and Caputo fractional differential equations, and systems of fractional differential equations subject to nonlocal boundary conditions. The monograph draws together many of the authors' results, that have been obtained and highly cited in the literature in the last four years.In each chapter, various examples are presented which support the main results. The methods used in the proof of these theorems include results from the fixed point theory and fixed point index theory. This volume can serve as a good resource for mathematical and scientific researchers, and for graduate students in mathematics and science interested in the existence of solutions for fractional differential equations and systems.

Ordinary Differential Equations And Boundary Value Problems - Volume I: Advanced Ordinary Differential Equations

Download Ordinary Differential Equations And Boundary Value Problems - Volume I: Advanced Ordinary Differential Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813236477
Total Pages : 177 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations And Boundary Value Problems - Volume I: Advanced Ordinary Differential Equations by : John R Graef

Download or read book Ordinary Differential Equations And Boundary Value Problems - Volume I: Advanced Ordinary Differential Equations written by John R Graef and published by World Scientific. This book was released on 2018-02-13 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors give a treatment of the theory of ordinary differential equations (ODEs) that is excellent for a first course at the graduate level as well as for individual study. The reader will find it to be a captivating introduction with a number of non-routine exercises dispersed throughout the book.The authors begin with a study of initial value problems for systems of differential equations including the Picard and Peano existence theorems. The continuability of solutions, their continuous dependence on initial conditions, and their continuous dependence with respect to parameters are presented in detail. This is followed by a discussion of the differentiability of solutions with respect to initial conditions and with respect to parameters. Comparison results and differential inequalities are included as well.Linear systems of differential equations are treated in detail as is appropriate for a study of ODEs at this level. Just the right amount of basic properties of matrices are introduced to facilitate the observation of matrix systems and especially those with constant coefficients. Floquet theory for linear periodic systems is presented and used to analyze nonhomogeneous linear systems.Stability theory of first order and vector linear systems are considered. The relationships between stability of solutions, uniform stability, asymptotic stability, uniformly asymptotic stability, and strong stability are examined and illustrated with examples as is the stability of vector linear systems. The book concludes with a chapter on perturbed systems of ODEs.

Variational Methods

Download Variational Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662032120
Total Pages : 288 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Variational Methods by : Michael Struwe

Download or read book Variational Methods written by Michael Struwe and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radò. The book gives a concise introduction to variational methods and presents an overview of areas of current research in this field. This new edition has been substantially enlarged, a new chapter on the Yamabe problem has been added and the references have been updated. All topics are illustrated by carefully chosen examples, representing the current state of the art in their field.

The Strong Nonlinear Limit-point/limit-circle Problem

Download The Strong Nonlinear Limit-point/limit-circle Problem PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813226390
Total Pages : 325 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis The Strong Nonlinear Limit-point/limit-circle Problem by : John R Graef

Download or read book The Strong Nonlinear Limit-point/limit-circle Problem written by John R Graef and published by World Scientific. This book was released on 2017-10-06 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: The limit-point/limit-circle problem had its beginnings more than 100 years ago with the publication of Hermann Weyl's classic paper in Mathematische Annalen in 1910 on linear differential equations. This concept was extended to second-order nonlinear equations in the late 1970's and later, to higher order nonlinear equations. This monograph traces the development of what is known as the strong nonlinear limit-point and limit-circle properties of solutions. In addition to bringing together all such results into one place, some new directions that the study has taken as well as some open problems for future research are indicated.

Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems

Download Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9781402013850
Total Pages : 400 pages
Book Rating : 4.0/5 (138 download)

DOWNLOAD NOW!


Book Synopsis Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems by : Dumitru Motreanu

Download or read book Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems written by Dumitru Motreanu and published by Springer Science & Business Media. This book was released on 2003-05-31 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reflects a significant part of authors' research activity dur ing the last ten years. The present monograph is constructed on the results obtained by the authors through their direct cooperation or due to the authors separately or in cooperation with other mathematicians. All these results fit in a unitary scheme giving the structure of this work. The book is mainly addressed to researchers and scholars in Pure and Applied Mathematics, Mechanics, Physics and Engineering. We are greatly indebted to Viorica Venera Motreanu for the careful reading of the manuscript and helpful comments on important issues. We are also grateful to our Editors of Kluwer Academic Publishers for their professional assistance. Our deepest thanks go to our numerous scientific collaborators and friends, whose work was so important for us. D. Motreanu and V. Radulescu IX Introduction The present monograph is based on original results obtained by the authors in the last decade. This book provides a comprehensive expo sition of some modern topics in nonlinear analysis with applications to the study of several classes of boundary value problems. Our framework includes multivalued elliptic problems with discontinuities, variational inequalities, hemivariational inequalities and evolution problems. The treatment relies on variational methods, monotonicity principles, topo logical arguments and optimization techniques. Excepting Sections 1 and 3 in Chapter 1 and Sections 1 and 3 in Chapter 2, the material is new in comparison with any other book, representing research topics where the authors contributed. The outline of our work is the following.

Ordinary Differential Equations And Boundary Value Problems - Volume Ii: Boundary Value Problems

Download Ordinary Differential Equations And Boundary Value Problems - Volume Ii: Boundary Value Problems PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813274042
Total Pages : 343 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Ordinary Differential Equations And Boundary Value Problems - Volume Ii: Boundary Value Problems by : John R Graef

Download or read book Ordinary Differential Equations And Boundary Value Problems - Volume Ii: Boundary Value Problems written by John R Graef and published by World Scientific. This book was released on 2018-09-18 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors give a systematic introduction to boundary value problems (BVPs) for ordinary differential equations. The book is a graduate level text and good to use for individual study. With the relaxed style of writing, the reader will find it to be an enticing invitation to join this important area of mathematical research. Starting with the basics of boundary value problems for ordinary differential equations, linear equations and the construction of Green's functions are presented clearly.A discussion of the important question of the existence of solutions to both linear and nonlinear problems plays a central role in this volume and this includes solution matching and the comparison of eigenvalues.The important and very active research area on existence and multiplicity of positive solutions is treated in detail. The last chapter is devoted to nodal solutions for BVPs with separated boundary conditions as well as for non-local problems.While this Volume II complements , it can be used as a stand-alone work.

Higher Order Boundary Value Problems On Unbounded Domains: Types Of Solutions, Functional Problems And Applications

Download Higher Order Boundary Value Problems On Unbounded Domains: Types Of Solutions, Functional Problems And Applications PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813220074
Total Pages : 217 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Higher Order Boundary Value Problems On Unbounded Domains: Types Of Solutions, Functional Problems And Applications by : Feliz Manuel Minhos

Download or read book Higher Order Boundary Value Problems On Unbounded Domains: Types Of Solutions, Functional Problems And Applications written by Feliz Manuel Minhos and published by World Scientific. This book was released on 2017-08-23 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a comprehensive overview on different types of higher order boundary value problems defined on the half-line or on the real line (Sturm-Liouville and Lidstone types, impulsive, functional and problems defined by Hammerstein integral equations). It also includes classical and new methods and techniques to deal with the lack of compactness of the related operators.The reader will find a selection of original and recent results in this field, conditions to obtain solutions with particular qualitative properties, such as homoclinic and heteroclinic solutions and its relation with the solutions of Lidstone problems on all the real line.Each chapter contains applications to real phenomena, to classical equations or problems, with a common denominator: they are defined on unbounded intervals and the existing results in the literature are scarce or proven only numerically in discrete cases.The last part features some higher order functional problems, which generalize the classical two-point or multi-point boundary conditions, to more comprehensive data where an overall behavior of the unknown functions and their derivatives is involved.

Quantum Calculus: New Concepts, Impulsive Ivps And Bvps, Inequalities

Download Quantum Calculus: New Concepts, Impulsive Ivps And Bvps, Inequalities PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813141549
Total Pages : 289 pages
Book Rating : 4.8/5 (131 download)

DOWNLOAD NOW!


Book Synopsis Quantum Calculus: New Concepts, Impulsive Ivps And Bvps, Inequalities by : Bashir Ahmad

Download or read book Quantum Calculus: New Concepts, Impulsive Ivps And Bvps, Inequalities written by Bashir Ahmad and published by World Scientific. This book was released on 2016-06-07 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this book is to extend the scope of the q-calculus based on the definition of q-derivative [Jackson (1910)] to make it applicable to dense domains. As a matter of fact, Jackson's definition of q-derivative fails to work for impulse points while this situation does not arise for impulsive equations on q-time scales as the domains consist of isolated points covering the case of consecutive points. In precise terms, we study quantum calculus on finite intervals.In the first part, we discuss the concepts of qk-derivative and qk-integral, and establish their basic properties. As applications, we study initial and boundary value problems of impulsive qk-difference equations and inclusions equipped with different kinds of boundary conditions. We also transform some classical integral inequalities and develop some new integral inequalities for convex functions in the context of qk-calculus. In the second part, we develop fractional quantum calculus in relation to a new qk-shifting operator and establish some existence and qk uniqueness results for initial and boundary value problems of impulsive fractional qk-difference equations.

Critical Point Theory and Hamiltonian Systems

Download Critical Point Theory and Hamiltonian Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475720610
Total Pages : 292 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Critical Point Theory and Hamiltonian Systems by : Jean Mawhin

Download or read book Critical Point Theory and Hamiltonian Systems written by Jean Mawhin and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems

Download Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461493234
Total Pages : 465 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems by : Dumitru Motreanu

Download or read book Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems written by Dumitru Motreanu and published by Springer Science & Business Media. This book was released on 2013-11-19 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.

Nonlinear Analysis, Differential Equations and Control

Download Nonlinear Analysis, Differential Equations and Control PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401145601
Total Pages : 614 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Analysis, Differential Equations and Control by : F.H. Clarke

Download or read book Nonlinear Analysis, Differential Equations and Control written by F.H. Clarke and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have witnessed important developments in those areas of the mathematical sciences where the basic model under study is a dynamical system such as a differential equation or control process. Many of these recent advances were made possible by parallel developments in nonlinear and nonsmooth analysis. The latter subjects, in general terms, encompass differential analysis and optimization theory in the absence of traditional linearity, convexity or smoothness assumptions. In the last three decades it has become increasingly recognized that nonlinear and nonsmooth behavior is naturally present and prevalent in dynamical models, and is therefore significant theoretically. This point of view has guided us in the organizational aspects of this ASI. Our goals were twofold: We intended to achieve "cross fertilization" between mathematicians who were working in a diverse range of problem areas, but who all shared an interest in nonlinear and nonsmooth analysis. More importantly, it was our goal to expose a young international audience (mainly graduate students and recent Ph. D. 's) to these important subjects. In that regard, there were heavy pedagogical demands placed upon the twelve speakers of the ASI, in meeting the needs of such a gathering. The talks, while exposing current areas of research activity, were required to be as introductory and comprehensive as possible. It is our belief that these goals were achieved, and that these proceedings bear this out. Each of the twelve speakers presented a mini-course of four or five hours duration.

International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics

Download International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (141 download)

DOWNLOAD NOW!


Book Synopsis International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics by :

Download or read book International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics written by and published by . This book was released on 1963 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Variational Methods

Download Variational Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662026244
Total Pages : 256 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Variational Methods by : Michael Struwe

Download or read book Variational Methods written by Michael Struwe and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: It would be hopeless to attempt to give a complete account of the history of the calculus of variations. The interest of Greek philosophers in isoperimetric problems underscores the importance of "optimal form" in ancient cultures, see Hildebrandt-Tromba [1] for a beautiful treatise of this subject. While variatio nal problems thus are part of our classical cultural heritage, the first modern treatment of a variational problem is attributed to Fermat (see Goldstine [1; p.l]). Postulating that light follows a path of least possible time, in 1662 Fer mat was able to derive the laws of refraction, thereby using methods which may already be termed analytic. With the development of the Calculus by Newton and Leibniz, the basis was laid for a more systematic development of the calculus of variations. The brothers Johann and Jakob Bernoulli and Johann's student Leonhard Euler, all from the city of Basel in Switzerland, were to become the "founding fathers" (Hildebrandt-Tromba [1; p.21]) of this new discipline. In 1743 Euler [1] sub mitted "A method for finding curves enjoying certain maximum or minimum properties", published 1744, the first textbook on the calculus of variations.