Introduction to Functional Differential Equations

Download Introduction to Functional Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461243424
Total Pages : 458 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Functional Differential Equations by : Jack K. Hale

Download or read book Introduction to Functional Differential Equations written by Jack K. Hale and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book builds upon an earlier work of J. Hale, "Theory of Func tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constants formula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . .

Stability of Functional Differential Equations

Download Stability of Functional Differential Equations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080963145
Total Pages : 233 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Stability of Functional Differential Equations by :

Download or read book Stability of Functional Differential Equations written by and published by Elsevier. This book was released on 1986-04-15 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the structure and stability properties of solutions of functional differential equations. Numerous examples of applications (such as feedback systrems with aftereffect, two-reflector antennae, nuclear reactors, mathematical models in immunology, viscoelastic bodies, aeroautoelastic phenomena and so on) are considered in detail. The development is illustrated by numerous figures and tables.

Generalized Solutions of Functional Differential Equations

Download Generalized Solutions of Functional Differential Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810212070
Total Pages : 428 pages
Book Rating : 4.2/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Generalized Solutions of Functional Differential Equations by : Joseph Wiener

Download or read book Generalized Solutions of Functional Differential Equations written by Joseph Wiener and published by World Scientific. This book was released on 1993 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need to investigate functional differential equations with discontinuous delays is addressed in this book. Recording the work and findings of several scientists on differential equations with piecewise continuous arguments over the last few years, this book serves as a useful source of reference. Great interest is placed on discussing the stability, oscillation and periodic properties of the solutions. Considerable attention is also given to the study of initial and boundary-value problems for partial differential equations of mathematical physics with discontinuous time delays. In fact, a large part of the book is devoted to the exploration of differential and functional differential equations in spaces of generalized functions (distributions) and contains a wealth of new information in this area. Each topic discussed appears to provide ample opportunity for extending the known results. A list of new research topics and open problems is also included as an update.

Nonoscillation Theory of Functional Differential Equations with Applications

Download Nonoscillation Theory of Functional Differential Equations with Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461434556
Total Pages : 526 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Nonoscillation Theory of Functional Differential Equations with Applications by : Ravi P. Agarwal

Download or read book Nonoscillation Theory of Functional Differential Equations with Applications written by Ravi P. Agarwal and published by Springer Science & Business Media. This book was released on 2012-04-23 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.​

Theory of Functional Differential Equations

Download Theory of Functional Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146129892X
Total Pages : 374 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Theory of Functional Differential Equations by : Jack K. Hale

Download or read book Theory of Functional Differential Equations written by Jack K. Hale and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of my lecture notes, Functional Differential Equations in the Applied Mathematical Sciences series, many new developments have occurred. As a consequence, it was decided not to make a few corrections and additions for a second edition of those notes, but to present a more compre hensive theory. The present work attempts to consolidate those elements of the theory which have stabilized and also to include recent directions of research. The following chapters were not discussed in my original notes. Chapter 1 is an elementary presentation of linear differential difference equations with constant coefficients of retarded and neutral type. Chapter 4 develops the recent theory of dissipative systems. Chapter 9 is a new chapter on perturbed systems. Chapter 11 is a new presentation incorporating recent results on the existence of periodic solutions of autonomous equations. Chapter 12 is devoted entirely to neutral equations. Chapter 13 gives an introduction to the global and generic theory. There is also an appendix on the location of the zeros of characteristic polynomials. The remainder of the material has been completely revised and updated with the most significant changes occurring in Chapter 3 on the properties of solutions, Chapter 5 on stability, and Chapter lOon behavior near a periodic orbit.

Applied Theory of Functional Differential Equations

Download Applied Theory of Functional Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401580847
Total Pages : 246 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Applied Theory of Functional Differential Equations by : V. Kolmanovskii

Download or read book Applied Theory of Functional Differential Equations written by V. Kolmanovskii and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Download Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387709142
Total Pages : 600 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis

Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Functional Differential Equations with Infinite Delay

Download Functional Differential Equations with Infinite Delay PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540473882
Total Pages : 326 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Functional Differential Equations with Infinite Delay by : Yoshiyuki Hino

Download or read book Functional Differential Equations with Infinite Delay written by Yoshiyuki Hino and published by Springer. This book was released on 2006-11-14 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the theory of functional differential equations with infinite delay, there are several ways to choose the space of initial functions (phase space); and diverse (duplicated) theories arise, according to the choice of phase space. To unify the theories, an axiomatic approach has been taken since the 1960's. This book is intended as a guide for the axiomatic approach to the theory of equations with infinite delay and a culmination of the results obtained in this way. It can also be used as a textbook for a graduate course. The prerequisite knowledge is foundations of analysis including linear algebra and functional analysis. It is hoped that the book will prepare students for further study of this area, and that will serve as a ready reference to the researchers in applied analysis and engineering sciences.

Functional Differential Equations

Download Functional Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119189470
Total Pages : 362 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Functional Differential Equations by : Constantin Corduneanu

Download or read book Functional Differential Equations written by Constantin Corduneanu and published by John Wiley & Sons. This book was released on 2016-04-11 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.

Analytic Solutions of Functional Equations

Download Analytic Solutions of Functional Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812793348
Total Pages : 296 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Analytic Solutions of Functional Equations by : Sui Sun Cheng

Download or read book Analytic Solutions of Functional Equations written by Sui Sun Cheng and published by World Scientific. This book was released on 2008 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a self-contained and unified introduction to the properties of analytic functions. Based on recent research results, it provides many examples of functional equations to show how analytic solutions can be found.Unlike in other books, analytic functions are treated here as those generated by sequences with positive radii of convergence. By developing operational means for handling sequences, functional equations can then be transformed into recurrence relations or difference equations in a straightforward manner. Their solutions can also be found either by qualitative means or by computation. The subsequent formal power series function can then be asserted as a true solution once convergence is established by various convergence tests and majorization techniques. Functional equations in this book may also be functional differential equations or iterative equations, which are different from the differential equations studied in standard textbooks since composition of known or unknown functions are involved.

Theory and Applications of Partial Functional Differential Equations

Download Theory and Applications of Partial Functional Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461240506
Total Pages : 441 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Theory and Applications of Partial Functional Differential Equations by : Jianhong Wu

Download or read book Theory and Applications of Partial Functional Differential Equations written by Jianhong Wu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.

Stability & Periodic Solutions of Ordinary & Functional Differential Equations

Download Stability & Periodic Solutions of Ordinary & Functional Differential Equations PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486150453
Total Pages : 370 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Stability & Periodic Solutions of Ordinary & Functional Differential Equations by : T. A. Burton

Download or read book Stability & Periodic Solutions of Ordinary & Functional Differential Equations written by T. A. Burton and published by Courier Corporation. This book was released on 2014-06-24 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book's discussion of a broad class of differential equations includes linear differential and integrodifferential equations, fixed-point theory, and the basic stability and periodicity theory for nonlinear ordinary and functional differential equations.

Oscillation Theory for Functional Differential Equations

Download Oscillation Theory for Functional Differential Equations PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 135142632X
Total Pages : 504 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Oscillation Theory for Functional Differential Equations by : Lynn Erbe

Download or read book Oscillation Theory for Functional Differential Equations written by Lynn Erbe and published by Routledge. This book was released on 2017-10-02 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.

Elliptic Functional Differential Equations and Applications

Download Elliptic Functional Differential Equations and Applications PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034890338
Total Pages : 298 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Functional Differential Equations and Applications by : Alexander L. Skubachevskii

Download or read book Elliptic Functional Differential Equations and Applications written by Alexander L. Skubachevskii and published by Birkhäuser. This book was released on 2012-12-06 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary value problems for elliptic differential-difference equations have some astonishing properties. For example, unlike elliptic differential equations, the smoothness of the generalized solutions can be broken in a bounded domain and is preserved only in some subdomains. The symbol of a self-adjoint semibounded functional differential operator can change its sign. The purpose of this book is to present for the first time general results concerning solvability and spectrum of these problems, a priori estimates and smoothness of solutions. The approach is based on the properties of elliptic operators and difference operators in Sobolev spaces. The most important features distinguishing this work are applications to different fields of science. The methods in this book are used to obtain new results regarding the solvability of nonlocal elliptic boundary value problems and the existence of Feller semigroups for multidimensional diffusion processes. Moreover, applications to control theory and aircraft and rocket technology are given. The theory is illustrated with numerous figures and examples. The book is addresssed to graduate students and researchers in partial differential equations and functional differential equations. It will also be of use to engineers in control theory and elasticity theory.

Asymptotic Analysis for Functional Stochastic Differential Equations

Download Asymptotic Analysis for Functional Stochastic Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319469797
Total Pages : 159 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Asymptotic Analysis for Functional Stochastic Differential Equations by : Jianhai Bao

Download or read book Asymptotic Analysis for Functional Stochastic Differential Equations written by Jianhai Bao and published by Springer. This book was released on 2016-11-19 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity.This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.

Oscillation Theory for Difference and Functional Differential Equations

Download Oscillation Theory for Difference and Functional Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401594015
Total Pages : 344 pages
Book Rating : 4.4/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Oscillation Theory for Difference and Functional Differential Equations by : R.P. Agarwal

Download or read book Oscillation Theory for Difference and Functional Differential Equations written by R.P. Agarwal and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ~)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.

Techniques of Functional Analysis for Differential and Integral Equations

Download Techniques of Functional Analysis for Differential and Integral Equations PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128114576
Total Pages : 322 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Techniques of Functional Analysis for Differential and Integral Equations by : Paul Sacks

Download or read book Techniques of Functional Analysis for Differential and Integral Equations written by Paul Sacks and published by Academic Press. This book was released on 2017-05-16 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics