Applied Deep Learning and Computer Vision for Self-Driving Cars

Download Applied Deep Learning and Computer Vision for Self-Driving Cars PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838647023
Total Pages : 320 pages
Book Rating : 4.8/5 (386 download)

DOWNLOAD NOW!


Book Synopsis Applied Deep Learning and Computer Vision for Self-Driving Cars by : Sumit Ranjan

Download or read book Applied Deep Learning and Computer Vision for Self-Driving Cars written by Sumit Ranjan and published by Packt Publishing Ltd. This book was released on 2020-08-14 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore self-driving car technology using deep learning and artificial intelligence techniques and libraries such as TensorFlow, Keras, and OpenCV Key FeaturesBuild and train powerful neural network models to build an autonomous carImplement computer vision, deep learning, and AI techniques to create automotive algorithmsOvercome the challenges faced while automating different aspects of driving using modern Python libraries and architecturesBook Description Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries. What you will learnImplement deep neural network from scratch using the Keras libraryUnderstand the importance of deep learning in self-driving carsGet to grips with feature extraction techniques in image processing using the OpenCV libraryDesign a software pipeline that detects lane lines in videosImplement a convolutional neural network (CNN) image classifier for traffic signal signsTrain and test neural networks for behavioral-cloning by driving a car in a virtual simulatorDiscover various state-of-the-art semantic segmentation and object detection architecturesWho this book is for If you are a deep learning engineer, AI researcher, or anyone looking to implement deep learning and computer vision techniques to build self-driving blueprint solutions, this book is for you. Anyone who wants to learn how various automotive-related algorithms are built, will also find this book useful. Python programming experience, along with a basic understanding of deep learning, is necessary to get the most of this book.

Emerging Technologies in Data Mining and Information Security

Download Emerging Technologies in Data Mining and Information Security PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981159774X
Total Pages : 994 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Emerging Technologies in Data Mining and Information Security by : João Manuel R. S. Tavares

Download or read book Emerging Technologies in Data Mining and Information Security written by João Manuel R. S. Tavares and published by Springer Nature. This book was released on 2021-05-04 with total page 994 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2020) held at the University of Engineering & Management, Kolkata, India, during July 2020. The book is organized in three volumes and includes high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers, and case studies related to all the areas of data mining, machine learning, Internet of things (IoT), and information security.

Creating Autonomous Vehicle Systems

Download Creating Autonomous Vehicle Systems PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1681731673
Total Pages : 285 pages
Book Rating : 4.6/5 (817 download)

DOWNLOAD NOW!


Book Synopsis Creating Autonomous Vehicle Systems by : Shaoshan Liu

Download or read book Creating Autonomous Vehicle Systems written by Shaoshan Liu and published by Morgan & Claypool Publishers. This book was released on 2017-10-25 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.

How Self-Driving Cars Work

Download How Self-Driving Cars Work PDF Online Free

Author :
Publisher : Cavendish Square Publishing, LLC
ISBN 13 : 1502637499
Total Pages : 34 pages
Book Rating : 4.5/5 (26 download)

DOWNLOAD NOW!


Book Synopsis How Self-Driving Cars Work by : Ian Chow-Miller

Download or read book How Self-Driving Cars Work written by Ian Chow-Miller and published by Cavendish Square Publishing, LLC. This book was released on 2018-07-15 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: Once considered a possibility of the distant future, the technology for self-driving vehicles may soon be fully realized and widely available. In this timely resource, young readers will discover how self-driving cars work, how they move safely about the road, and how these amazing innovations have evolved from the automobile as we know it.

Practical Simulations for Machine Learning

Download Practical Simulations for Machine Learning PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492089893
Total Pages : 334 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Simulations for Machine Learning by : Paris Buttfield-Addison

Download or read book Practical Simulations for Machine Learning written by Paris Buttfield-Addison and published by "O'Reilly Media, Inc.". This book was released on 2022-06-07 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can synthesize artificial data using simulations to train traditional machine learning models.That’s just the beginning. With this practical book, you’ll explore the possibilities of simulation- and synthesis-based machine learning and AI, concentrating on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential. You'll learn how to: Design an approach for solving ML and AI problems using simulations with the Unity engine Use a game engine to synthesize images for use as training data Create simulation environments designed for training deep reinforcement learning and imitation learning models Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization Train a variety of ML models using different approaches Enable ML tools to work with industry-standard game development tools, using PyTorch, and the Unity ML-Agents and Perception Toolkits

Machine Learning for Predictive Analysis

Download Machine Learning for Predictive Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811571066
Total Pages : 627 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Predictive Analysis by : Amit Joshi

Download or read book Machine Learning for Predictive Analysis written by Amit Joshi and published by Springer Nature. This book was released on 2020-10-22 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers papers addressing state-of-the-art research in the areas of machine learning and predictive analysis, presented virtually at the Fourth International Conference on Information and Communication Technology for Intelligent Systems (ICTIS 2020), India. It covers topics such as intelligent agent and multi-agent systems in various domains, machine learning, intelligent information retrieval and business intelligence, intelligent information system development using design science principles, intelligent web mining and knowledge discovery systems.

Hands-On Vision and Behavior for Self-Driving Cars

Download Hands-On Vision and Behavior for Self-Driving Cars PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800201931
Total Pages : 374 pages
Book Rating : 4.8/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Vision and Behavior for Self-Driving Cars by : Luca Venturi

Download or read book Hands-On Vision and Behavior for Self-Driving Cars written by Luca Venturi and published by Packt Publishing Ltd. This book was released on 2020-10-23 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to learning visual perception for self-driving cars for computer vision and autonomous system engineers Key FeaturesExplore the building blocks of the visual perception system in self-driving carsIdentify objects and lanes to define the boundary of driving surfaces using open-source tools like OpenCV and PythonImprove the object detection and classification capabilities of systems with the help of neural networksBook Description The visual perception capabilities of a self-driving car are powered by computer vision. The work relating to self-driving cars can be broadly classified into three components - robotics, computer vision, and machine learning. This book provides existing computer vision engineers and developers with the unique opportunity to be associated with this booming field. You will learn about computer vision, deep learning, and depth perception applied to driverless cars. The book provides a structured and thorough introduction, as making a real self-driving car is a huge cross-functional effort. As you progress, you will cover relevant cases with working code, before going on to understand how to use OpenCV, TensorFlow and Keras to analyze video streaming from car cameras. Later, you will learn how to interpret and make the most of lidars (light detection and ranging) to identify obstacles and localize your position. You’ll even be able to tackle core challenges in self-driving cars such as finding lanes, detecting pedestrian and crossing lights, performing semantic segmentation, and writing a PID controller. By the end of this book, you’ll be equipped with the skills you need to write code for a self-driving car running in a driverless car simulator, and be able to tackle various challenges faced by autonomous car engineers. What you will learnUnderstand how to perform camera calibrationBecome well-versed with how lane detection works in self-driving cars using OpenCVExplore behavioral cloning by self-driving in a video-game simulatorGet to grips with using lidarsDiscover how to configure the controls for autonomous vehiclesUse object detection and semantic segmentation to locate lanes, cars, and pedestriansWrite a PID controller to control a self-driving car running in a simulatorWho this book is for This book is for software engineers who are interested in learning about technologies that drive the autonomous car revolution. Although basic knowledge of computer vision and Python programming is required, prior knowledge of advanced deep learning and how to use sensors (lidar) is not needed.

Intelligent Computing, Information and Control Systems

Download Intelligent Computing, Information and Control Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030304655
Total Pages : 748 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Computing, Information and Control Systems by : A. Pasumpon Pandian

Download or read book Intelligent Computing, Information and Control Systems written by A. Pasumpon Pandian and published by Springer Nature. This book was released on 2019-10-18 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt: From past decades, Computational intelligence embraces a number of nature-inspired computational techniques which mainly encompasses fuzzy sets, genetic algorithms, artificial neural networks and hybrid neuro-fuzzy systems to address the computational complexities such as uncertainties, vagueness and stochastic nature of various computational problems practically. At the same time, Intelligent Control systems are emerging as an innovative methodology which is inspired by various computational intelligence process to promote a control over the systems without the use of any mathematical models. To address the effective use of intelligent control in Computational intelligence systems, International Conference on Intelligent Computing, Information and Control Systems (ICICCS 2019) is initiated to encompass the various research works that helps to develop and advance the next-generation intelligent computing and control systems. This book integrates the computational intelligence and intelligent control systems to provide a powerful methodology for a wide range of data analytics issues in industries and societal applications. The recent research advances in computational intelligence and control systems are addressed, which provide very promising results in various industry, business and societal studies. This book also presents the new algorithms and methodologies for promoting advances in common intelligent computing and control methodologies including evolutionary computation, artificial life, virtual infrastructures, fuzzy logic, artificial immune systems, neural networks and various neuro-hybrid methodologies. This book will be pragmatic for researchers, academicians and students dealing with mathematically intransigent problems. It is intended for both academicians and researchers in the field of Intelligent Computing, Information and Control Systems, along with the distinctive readers in the fields of computational and artificial intelligence to gain more knowledge on Intelligent computing and control systems and their real-world applications.

2020 International Symposium on Computer, Consumer and Control

Download 2020 International Symposium on Computer, Consumer and Control PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (126 download)

DOWNLOAD NOW!


Book Synopsis 2020 International Symposium on Computer, Consumer and Control by : Chia-Hung Lin

Download or read book 2020 International Symposium on Computer, Consumer and Control written by Chia-Hung Lin and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Artificial Intelligence

Download Artificial Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783030595340
Total Pages : 488 pages
Book Rating : 4.5/5 (953 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence by : Sergei O. Kuznetsov

Download or read book Artificial Intelligence written by Sergei O. Kuznetsov and published by Springer. This book was released on 2020-10-23 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 18th Russian Conference on Artificial Intelligence, RCAI 2020, held in Moscow, Russia, in October 2020. The 27 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 140 submissions. The conference deals with a wide range of topics, including data mining and knowledge discovery, text mining, reasoning, decisionmaking, natural language processing, vision, intelligent robotics, multi-agent systems,machine learning, AI in applied systems, and ontology engineering.

Practical Deep Learning for Cloud, Mobile, and Edge

Download Practical Deep Learning for Cloud, Mobile, and Edge PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492034819
Total Pages : 585 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Practical Deep Learning for Cloud, Mobile, and Edge by : Anirudh Koul

Download or read book Practical Deep Learning for Cloud, Mobile, and Edge written by Anirudh Koul and published by "O'Reilly Media, Inc.". This book was released on 2019-10-14 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users

Autonomous driving algorithms and Its IC Design

Download Autonomous driving algorithms and Its IC Design PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819928974
Total Pages : 306 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Autonomous driving algorithms and Its IC Design by : Jianfeng Ren

Download or read book Autonomous driving algorithms and Its IC Design written by Jianfeng Ren and published by Springer Nature. This book was released on 2023-08-09 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the rapid development of artificial intelligence and the emergence of various new sensors, autonomous driving has grown in popularity in recent years. The implementation of autonomous driving requires new sources of sensory data, such as cameras, radars, and lidars, and the algorithm processing requires a high degree of parallel computing. In this regard, traditional CPUs have insufficient computing power, while DSPs are good at image processing but lack sufficient performance for deep learning. Although GPUs are good at training, they are too “power-hungry,” which can affect vehicle performance. Therefore, this book looks to the future, arguing that custom ASICs are bound to become mainstream. With the goal of ICs design for autonomous driving, this book discusses the theory and engineering practice of designing future-oriented autonomous driving SoC chips. The content is divided into thirteen chapters, the first chapter mainly introduces readers to the current challenges and research directions in autonomous driving. Chapters 2–6 focus on algorithm design for perception and planning control. Chapters 7–10 address the optimization of deep learning models and the design of deep learning chips, while Chapters 11-12 cover automatic driving software architecture design. Chapter 13 discusses the 5G application on autonomous drving. This book is suitable for all undergraduates, graduate students, and engineering technicians who are interested in autonomous driving.

Person Re-Identification

Download Person Re-Identification PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 144716296X
Total Pages : 446 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Person Re-Identification by : Shaogang Gong

Download or read book Person Re-Identification written by Shaogang Gong and published by Springer Science & Business Media. This book was released on 2014-01-03 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.

Driving to Safety

Download Driving to Safety PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 13 pages
Book Rating : 4.:/5 (948 download)

DOWNLOAD NOW!


Book Synopsis Driving to Safety by : Nidhi Kalra

Download or read book Driving to Safety written by Nidhi Kalra and published by . This book was released on 2016 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt:

ROS Robotics Projects

Download ROS Robotics Projects PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838645195
Total Pages : 449 pages
Book Rating : 4.8/5 (386 download)

DOWNLOAD NOW!


Book Synopsis ROS Robotics Projects by : Ramkumar Gandhinathan

Download or read book ROS Robotics Projects written by Ramkumar Gandhinathan and published by Packt Publishing Ltd. This book was released on 2019-12-18 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build exciting robotics projects such as mobile manipulators, self-driving cars, and industrial robots powered by ROS, machine learning, and virtual reality Key FeaturesCreate and program cool robotic projects using powerful ROS librariesBuild industrial robots like mobile manipulators to handle complex tasksLearn how reinforcement learning and deep learning are used with ROSBook Description Nowadays, heavy industrial robots placed in workcells are being replaced by new age robots called cobots, which don't need workcells. They are used in manufacturing, retail, banks, energy, and healthcare, among other domains. One of the major reasons for this rapid growth in the robotics market is the introduction of an open source robotics framework called the Robot Operating System (ROS). This book covers projects in the latest ROS distribution, ROS Melodic Morenia with Ubuntu Bionic (18.04). Starting with the fundamentals, this updated edition of ROS Robotics Projects introduces you to ROS-2 and helps you understand how it is different from ROS-1. You'll be able to model and build an industrial mobile manipulator in ROS and simulate it in Gazebo 9. You'll then gain insights into handling complex robot applications using state machines and working with multiple robots at a time. This ROS book also introduces you to new and popular hardware such as Nvidia's Jetson Nano, Asus Tinker Board, and Beaglebone Black, and allows you to explore interfacing with ROS. You'll learn as you build interesting ROS projects such as self-driving cars, making use of deep learning, reinforcement learning, and other key AI concepts. By the end of the book, you'll have gained the confidence to build interesting and intricate projects with ROS. What you will learnGrasp the basics of ROS and understand ROS applicationsUncover how ROS-2 is different from ROS-1Handle complex robot tasks using state machinesCommunicate with multiple robots and collaborate to build apps with themExplore ROS capabilities with the latest embedded boards such as Tinker Board S and Jetson NanoDiscover how machine learning and deep learning techniques are used with ROSBuild a self-driving car powered by ROSTeleoperate your robot using Leap Motion and a VR headsetWho this book is for If you’re a student, hobbyist, professional, or anyone with a passion for learning robotics and interested in learning about algorithms, motion control, and perception capabilities from scratch, this book is for you. This book is also ideal for anyone who wants to build a new product and for researchers to make the most of what’s already available to create something new and innovative in the field of robotics.

Theories and Practices of Self-Driving Vehicles

Download Theories and Practices of Self-Driving Vehicles PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0323994490
Total Pages : 346 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Theories and Practices of Self-Driving Vehicles by : Qingguo Zhou

Download or read book Theories and Practices of Self-Driving Vehicles written by Qingguo Zhou and published by Elsevier. This book was released on 2022-07-03 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-driving vehicles are a rapidly growing area of research and expertise. Theories and Practice of Self-Driving Vehicles presents a comprehensive introduction to the technology of self driving vehicles across the three domains of perception, planning and control. The title systematically introduces vehicle systems from principles to practice, including basic knowledge of ROS programming, machine and deep learning, as well as basic modules such as environmental perception and sensor fusion. The book introduces advanced control algorithms as well as important areas of new research. This title offers engineers, technicians and students an accessible handbook to the entire stack of technology in a self-driving vehicle. Theories and Practice of Self-Driving Vehicles presents an introduction to self-driving vehicle technology from principles to practice. Ten chapters cover the full stack of driverless technology for a self-driving vehicle. Written by two authors experienced in both industry and research, this book offers an accessible and systematic introduction to self-driving vehicle technology. - Provides a comprehensive introduction to the technology stack of a self-driving vehicle - Covers the three domains of perception, planning and control - Offers foundational theory and best practices - Introduces advanced control algorithms and high-potential areas of new research - Gives engineers, technicians and students an accessible handbook to self-driving vehicle technology and applications

Modeling, Simulation, and Control of AI Robotics and Autonomous Systems

Download Modeling, Simulation, and Control of AI Robotics and Autonomous Systems PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 :
Total Pages : 312 pages
Book Rating : 4.3/5 (693 download)

DOWNLOAD NOW!


Book Synopsis Modeling, Simulation, and Control of AI Robotics and Autonomous Systems by : Choudhury, Tanupriya

Download or read book Modeling, Simulation, and Control of AI Robotics and Autonomous Systems written by Choudhury, Tanupriya and published by IGI Global. This book was released on 2024-05-23 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chasm between the physical capabilities of Intelligent Robotics and Autonomous Systems (IRAS) and their cognitive potential presents a formidable challenge. While these machines exhibit astonishing strength, precision, and speed, their intelligence and adaptability lag far behind. This inherent limitation obstructs the realization of autonomous systems that could reshape industries, from self-driving vehicles to industrial automation. The solution to this dilemma is unveiled within the pages of Modeling, Simulation, and Control of AI Robotics and Autonomous Systems. Find within the pages of this book answers for the cognitive deficit within IRAS. While these systems boast remarkable physical capabilities, their potential for intelligent decision-making and adaptation remains stunted, thereby bringing innovation to a halt. Solving this issue would mean the re-acceleration of multiple industries that could utilize automation to prevent humans from needing to do work that is dangerous, and could revolutionize transportation, and more.