Basic Simple Type Theory

Download Basic Simple Type Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521465184
Total Pages : 200 pages
Book Rating : 4.5/5 (214 download)

DOWNLOAD NOW!


Book Synopsis Basic Simple Type Theory by : J. Roger Hindley

Download or read book Basic Simple Type Theory written by J. Roger Hindley and published by Cambridge University Press. This book was released on 1997 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Type theory is one of the most important tools in the design of higher-level programming languages, such as ML. This book introduces and teaches its techniques by focusing on one particularly neat system and studying it in detail. By concentrating on the principles that make the theory work in practice, the author covers all the key ideas without getting involved in the complications of more advanced systems. This book takes a type-assignment approach to type theory, and the system considered is the simplest polymorphic one. The author covers all the basic ideas, including the system's relation to propositional logic, and gives a careful treatment of the type-checking algorithm that lies at the heart of every such system. Also featured are two other interesting algorithms that until now have been buried in inaccessible technical literature. The mathematical presentation is rigorous but clear, making it the first book at this level that can be used as an introduction to type theory for computer scientists.

Categorical Logic and Type Theory

Download Categorical Logic and Type Theory PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 9780444508539
Total Pages : 784 pages
Book Rating : 4.5/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Categorical Logic and Type Theory by : B. Jacobs

Download or read book Categorical Logic and Type Theory written by B. Jacobs and published by Gulf Professional Publishing. This book was released on 2001-05-10 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

Type Theory and Formal Proof

Download Type Theory and Formal Proof PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316061086
Total Pages : 465 pages
Book Rating : 4.3/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Type Theory and Formal Proof by : Rob Nederpelt

Download or read book Type Theory and Formal Proof written by Rob Nederpelt and published by Cambridge University Press. This book was released on 2014-11-06 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.

Principia Mathematica

Download Principia Mathematica PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 688 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Principia Mathematica by : Alfred North Whitehead

Download or read book Principia Mathematica written by Alfred North Whitehead and published by . This book was released on 1910 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Intuitionistic Type Theory

Download Intuitionistic Type Theory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 116 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Intuitionistic Type Theory by : Per Martin-Löf

Download or read book Intuitionistic Type Theory written by Per Martin-Löf and published by . This book was released on 1984 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Categories for Types

Download Categories for Types PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521457019
Total Pages : 362 pages
Book Rating : 4.4/5 (57 download)

DOWNLOAD NOW!


Book Synopsis Categories for Types by : Roy L. Crole

Download or read book Categories for Types written by Roy L. Crole and published by Cambridge University Press. This book was released on 1993 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explains the basic principles of categorical type theory and the techniques used to derive categorical semantics for specific type theories. It introduces the reader to ordered set theory, lattices and domains, and this material provides plenty of examples for an introduction to category theory, which covers categories, functors, natural transformations, the Yoneda lemma, cartesian closed categories, limits, adjunctions and indexed categories. Four kinds of formal system are considered in detail, namely algebraic, functional, polymorphic functional, and higher order polymorphic functional type theory. For each of these the categorical semantics are derived and results about the type systems are proved categorically. Issues of soundness and completeness are also considered. Aimed at advanced undergraduates and beginning graduates, this book will be of interest to theoretical computer scientists, logicians and mathematicians specializing in category theory.

Programming in Martin-Löf's Type Theory

Download Programming in Martin-Löf's Type Theory PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 :
Total Pages : 240 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Programming in Martin-Löf's Type Theory by : Bengt Nordström

Download or read book Programming in Martin-Löf's Type Theory written by Bengt Nordström and published by Oxford University Press, USA. This book was released on 1990 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, several formalisms for program construction have appeared. One such formalism is the type theory developed by Per Martin-Löf. Well suited as a theory for program construction, it makes possible the expression of both specifications and programs within the same formalism. Furthermore, the proof rules can be used to derive a correct program from a specification as well as to verify that a given program has a certain property. This book contains a thorough introduction to type theory, with information on polymorphic sets, subsets, monomorphic sets, and a full set of helpful examples.

The Theory of Logical Types (Routledge Revivals)

Download The Theory of Logical Types (Routledge Revivals) PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1136816135
Total Pages : 174 pages
Book Rating : 4.1/5 (368 download)

DOWNLOAD NOW!


Book Synopsis The Theory of Logical Types (Routledge Revivals) by : Irving M. Copi

Download or read book The Theory of Logical Types (Routledge Revivals) written by Irving M. Copi and published by Routledge. This book was released on 2011-02-28 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reissue, first published in 1971, provides a brief historical account of the Theory of Logical Types; and describes the problems that gave rise to it, its various different formulations (Simple and Ramified), the difficulties connected with each, and the criticisms that have been directed against it. Professor Copi seeks to make the subject accessible to the non-specialist and yet provide a sufficiently rigorous exposition for the serious student to see exactly what the theory is and how it works.

Homotopy Type Theory: Univalent Foundations of Mathematics

Download Homotopy Type Theory: Univalent Foundations of Mathematics PDF Online Free

Author :
Publisher : Univalent Foundations
ISBN 13 :
Total Pages : 484 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Homotopy Type Theory: Univalent Foundations of Mathematics by :

Download or read book Homotopy Type Theory: Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Types and Programming Languages

Download Types and Programming Languages PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262303825
Total Pages : 646 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Types and Programming Languages by : Benjamin C. Pierce

Download or read book Types and Programming Languages written by Benjamin C. Pierce and published by MIT Press. This book was released on 2002-01-04 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to type systems and programming languages. A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, high-performance compilers, and security. This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material. The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.

Formal Semantics in Modern Type Theories

Download Formal Semantics in Modern Type Theories PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119489210
Total Pages : 256 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Formal Semantics in Modern Type Theories by : Stergios Chatzikyriakidis

Download or read book Formal Semantics in Modern Type Theories written by Stergios Chatzikyriakidis and published by John Wiley & Sons. This book was released on 2020-12-18 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies formal semantics in modern type theories (MTTsemantics). Compared with simple type theory, MTTs have much richer type structures and provide powerful means for adequate semantic constructions. This offers a serious alternative to the traditional settheoretical foundation for linguistic semantics and opens up a new avenue for developing formal semantics that is both model-theoretic and proof-theoretic, which was not available before the development of MTTsemantics. This book provides a reader-friendly and precise description of MTTs and offers a comprehensive introduction to MTT-semantics. It develops several case studies, such as adjectival modification and copredication, to exemplify the attractiveness of using MTTs for the study of linguistic meaning. It also examines existing proof assistant technology based on MTT-semantics for the verification of semantic constructions and reasoning in natural language. Several advanced topics are also briefly studied, including dependent event types, an application of dependent typing to event semantics.

Lambda Calculus with Types

Download Lambda Calculus with Types PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107276349
Total Pages : 969 pages
Book Rating : 4.1/5 (72 download)

DOWNLOAD NOW!


Book Synopsis Lambda Calculus with Types by : Henk Barendregt

Download or read book Lambda Calculus with Types written by Henk Barendregt and published by Cambridge University Press. This book was released on 2013-06-20 with total page 969 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook with exercises reveals in formalisms, hitherto mainly used for hardware and software design and verification, unexpected mathematical beauty. The lambda calculus forms a prototype universal programming language, which in its untyped version is related to Lisp, and was treated in the first author's classic The Lambda Calculus (1984). The formalism has since been extended with types and used in functional programming (Haskell, Clean) and proof assistants (Coq, Isabelle, HOL), used in designing and verifying IT products and mathematical proofs. In this book, the authors focus on three classes of typing for lambda terms: simple types, recursive types and intersection types. It is in these three formalisms of terms and types that the unexpected mathematical beauty is revealed. The treatment is authoritative and comprehensive, complemented by an exhaustive bibliography, and numerous exercises are provided to deepen the readers' understanding and increase their confidence using types.

An Introduction to Mathematical Logic and Type Theory

Download An Introduction to Mathematical Logic and Type Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9781402007637
Total Pages : 416 pages
Book Rating : 4.0/5 (76 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Mathematical Logic and Type Theory by : Peter B. Andrews

Download or read book An Introduction to Mathematical Logic and Type Theory written by Peter B. Andrews and published by Springer Science & Business Media. This book was released on 2002-07-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.

Sets for Mathematics

Download Sets for Mathematics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521010603
Total Pages : 280 pages
Book Rating : 4.0/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Sets for Mathematics by : F. William Lawvere

Download or read book Sets for Mathematics written by F. William Lawvere and published by Cambridge University Press. This book was released on 2003-01-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.

Proof Theory

Download Proof Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642664733
Total Pages : 309 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Proof Theory by : K. Schütte

Download or read book Proof Theory written by K. Schütte and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was originally intended to be the second edition of the book "Beweis theorie" (Grundlehren der mathematischen Wissenschaften, Band 103, Springer 1960), but in fact has been completely rewritten. As well as classical predicate logic we also treat intuitionistic predicate logic. The sentential calculus properties of classical formal and semiformal systems are treated using positive and negative parts of formulas as in the book "Beweistheorie". In a similar way we use right and left parts of formulas for intuitionistic predicate logic. We introduce the theory of functionals of finite types in order to present the Gi:idel interpretation of pure number theory. Instead of ramified type theory, type-free logic and the associated formalization of parts of analysis which we treated in the book "Beweistheorie", we have developed simple classical type theory and predicative analysis in a systematic way. Finally we have given consistency proofs for systems of lI~-analysis following the work of G. Takeuti. In order to do this we have introduced a constni'ctive system of notation for ordinals which goes far beyond the notation system in "Beweistheorie."

Qualified Types

Download Qualified Types PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521543262
Total Pages : 176 pages
Book Rating : 4.5/5 (432 download)

DOWNLOAD NOW!


Book Synopsis Qualified Types by : Mark P. Jones

Download or read book Qualified Types written by Mark P. Jones and published by Cambridge University Press. This book was released on 2003-10-16 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Qualified types can be viewed as a generalization of type classes in the functional language Haskell and the theorem prover Isabelle. These in turn are extensions of equality types in Standard ML. Other applications of qualified types include extensible records and subtyping. This book describes the use of qualified types to provide a general framework for the combination of polymorphism and overloading. Using a general formulation of qualified types, the author extends the Damas/Milner type inference algorithm to support qualified types. In addition, he describes a new technique for establishing suitable coherence conditions that guarantee the same semantics for all possible translations of a given term. Practical issues that arise in concrete implementations are also discussed, concentrating in particular on the implementation of overloading in Haskell and Gofer, a small functional programming system developed by the author. This book will be suitable for advanced graduate students and researchers in computer science.

Basic Proof Theory

Download Basic Proof Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521779111
Total Pages : 436 pages
Book Rating : 4.7/5 (791 download)

DOWNLOAD NOW!


Book Synopsis Basic Proof Theory by : A. S. Troelstra

Download or read book Basic Proof Theory written by A. S. Troelstra and published by Cambridge University Press. This book was released on 2000-07-27 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.