Semantic Systems. The Power of AI and Knowledge Graphs

Download Semantic Systems. The Power of AI and Knowledge Graphs PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030332209
Total Pages : 400 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Semantic Systems. The Power of AI and Knowledge Graphs by : Maribel Acosta

Download or read book Semantic Systems. The Power of AI and Knowledge Graphs written by Maribel Acosta and published by Springer Nature. This book was released on 2019-11-04 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book constitutes the refereed proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019, held in Karlsruhe, Germany, in September 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 88 submissions. They cover topics such as: web semantics and linked (open) data; machine learning and deep learning techniques; semantic information management and knowledge integration; terminology, thesaurus and ontology management; data mining and knowledge discovery; semantics in blockchain and distributed ledger technologies.

The Knowledge Graph CookBook

Download The Knowledge Graph CookBook PDF Online Free

Author :
Publisher :
ISBN 13 : 9783902796707
Total Pages : pages
Book Rating : 4.7/5 (967 download)

DOWNLOAD NOW!


Book Synopsis The Knowledge Graph CookBook by : Andreas Blumauer

Download or read book The Knowledge Graph CookBook written by Andreas Blumauer and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Semantic AI in Knowledge Graphs

Download Semantic AI in Knowledge Graphs PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000911225
Total Pages : 230 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Semantic AI in Knowledge Graphs by : Sanju Tiwari

Download or read book Semantic AI in Knowledge Graphs written by Sanju Tiwari and published by CRC Press. This book was released on 2023-08-21 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent combinations of semantic technology and artificial intelligence (AI) present new techniques to build intelligent systems that identify more precise results. Semantic AI in Knowledge Graphs locates itself at the forefront of this novel development, uncovering the role of machine learning to extend the knowledge graphs by graph mapping or corpus-based ontology learning. Securing efficient results via the combination of symbolic AI and statistical AI such as entity extraction based on machine learning, text mining methods, semantic knowledge graphs, and related reasoning power, this book is the first of its kind to explore semantic AI and knowledge graphs. A range of topics are covered, from neuro-symbolic AI, explainable AI and deep learning to knowledge discovery and mining, and knowledge representation and reasoning. A trailblazing exploration of semantic AI in knowledge graphs, this book is a significant contribution to both researchers in the field of AI and data mining as well as beginner academicians.

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges

Download Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 1643680811
Total Pages : 314 pages
Book Rating : 4.6/5 (436 download)

DOWNLOAD NOW!


Book Synopsis Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges by : I. Tiddi

Download or read book Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges written by I. Tiddi and published by IOS Press. This book was released on 2020-05-06 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.

Knowledge Graphs

Download Knowledge Graphs PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262361884
Total Pages : 559 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Knowledge Graphs by : Mayank Kejriwal

Download or read book Knowledge Graphs written by Mayank Kejriwal and published by MIT Press. This book was released on 2021-03-30 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous and comprehensive textbook covering the major approaches to knowledge graphs, an active and interdisciplinary area within artificial intelligence. The field of knowledge graphs, which allows us to model, process, and derive insights from complex real-world data, has emerged as an active and interdisciplinary area of artificial intelligence over the last decade, drawing on such fields as natural language processing, data mining, and the semantic web. Current projects involve predicting cyberattacks, recommending products, and even gleaning insights from thousands of papers on COVID-19. This textbook offers rigorous and comprehensive coverage of the field. It focuses systematically on the major approaches, both those that have stood the test of time and the latest deep learning methods.

Knowledge Graphs

Download Knowledge Graphs PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1636392369
Total Pages : 257 pages
Book Rating : 4.6/5 (363 download)

DOWNLOAD NOW!


Book Synopsis Knowledge Graphs by : Aidan Hogan

Download or read book Knowledge Graphs written by Aidan Hogan and published by Morgan & Claypool Publishers. This book was released on 2021-11-08 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.

Knowledge Graphs and Big Data Processing

Download Knowledge Graphs and Big Data Processing PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030531996
Total Pages : 212 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Knowledge Graphs and Big Data Processing by : Valentina Janev

Download or read book Knowledge Graphs and Big Data Processing written by Valentina Janev and published by Springer Nature. This book was released on 2020-07-15 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.

Exploiting Semantic Web Knowledge Graphs in Data Mining

Download Exploiting Semantic Web Knowledge Graphs in Data Mining PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 1614999813
Total Pages : 246 pages
Book Rating : 4.6/5 (149 download)

DOWNLOAD NOW!


Book Synopsis Exploiting Semantic Web Knowledge Graphs in Data Mining by : P. Ristoski

Download or read book Exploiting Semantic Web Knowledge Graphs in Data Mining written by P. Ristoski and published by IOS Press. This book was released on 2019-06-28 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in this field are knowledge intensive and can benefit from additional knowledge from various sources, so many approaches have been proposed that combine Semantic Web data with the data mining and knowledge discovery process. This book, Exploiting Semantic Web Knowledge Graphs in Data Mining, aims to show that Semantic Web knowledge graphs are useful for generating valuable data mining features that can be used in various data mining tasks. In Part I, Mining Semantic Web Knowledge Graphs, the author evaluates unsupervised feature generation strategies from types and relations in knowledge graphs used in different data mining tasks such as classification, regression, and outlier detection. Part II, Semantic Web Knowledge Graphs Embeddings, proposes an approach that circumvents the shortcomings introduced with the approaches in Part I, developing an approach that is able to embed complete Semantic Web knowledge graphs in a low dimensional feature space where each entity and relation in the knowledge graph is represented as a numerical vector. Finally, Part III, Applications of Semantic Web Knowledge Graphs, describes a list of applications that exploit Semantic Web knowledge graphs like classification and regression, showing that the approaches developed in Part I and Part II can be used in applications in various domains. The book will be of interest to all those working in the field of data mining and KDD.

Semantic Modeling for Data

Download Semantic Modeling for Data PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492054224
Total Pages : 332 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Semantic Modeling for Data by : Panos Alexopoulos

Download or read book Semantic Modeling for Data written by Panos Alexopoulos and published by "O'Reilly Media, Inc.". This book was released on 2020-08-19 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: What value does semantic data modeling offer? As an information architect or data science professional, let’s say you have an abundance of the right data and the technology to extract business gold—but you still fail. The reason? Bad data semantics. In this practical and comprehensive field guide, author Panos Alexopoulos takes you on an eye-opening journey through semantic data modeling as applied in the real world. You’ll learn how to master this craft to increase the usability and value of your data and applications. You’ll also explore the pitfalls to avoid and dilemmas to overcome for building high-quality and valuable semantic representations of data. Understand the fundamental concepts, phenomena, and processes related to semantic data modeling Examine the quirks and challenges of semantic data modeling and learn how to effectively leverage the available frameworks and tools Avoid mistakes and bad practices that can undermine your efforts to create good data models Learn about model development dilemmas, including representation, expressiveness and content, development, and governance Organize and execute semantic data initiatives in your organization, tackling technical, strategic, and organizational challenges

A Knowledge Representation Practionary

Download A Knowledge Representation Practionary PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319980920
Total Pages : 462 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis A Knowledge Representation Practionary by : Michael K. Bergman

Download or read book A Knowledge Representation Practionary written by Michael K. Bergman and published by Springer. This book was released on 2018-12-12 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This major work on knowledge representation is based on the writings of Charles S. Peirce, a logician, scientist, and philosopher of the first rank at the beginning of the 20th century. This book follows Peirce's practical guidelines and universal categories in a structured approach to knowledge representation that captures differences in events, entities, relations, attributes, types, and concepts. Besides the ability to capture meaning and context, the Peircean approach is also well-suited to machine learning and knowledge-based artificial intelligence. Peirce is a founder of pragmatism, the uniquely American philosophy. Knowledge representation is shorthand for how to represent human symbolic information and knowledge to computers to solve complex questions. KR applications range from semantic technologies and knowledge management and machine learning to information integration, data interoperability, and natural language understanding. Knowledge representation is an essential foundation for knowledge-based AI. This book is structured into five parts. The first and last parts are bookends that first set the context and background and conclude with practical applications. The three main parts that are the meat of the approach first address the terminologies and grammar of knowledge representation, then building blocks for KR systems, and then design, build, test, and best practices in putting a system together. Throughout, the book refers to and leverages the open source KBpedia knowledge graph and its public knowledge bases, including Wikipedia and Wikidata. KBpedia is a ready baseline for users to bridge from and expand for their own domain needs and applications. It is built from the ground up to reflect Peircean principles. This book is one of timeless, practical guidelines for how to think about KR and to design knowledge management (KM) systems. The book is grounded bedrock for enterprise information and knowledge managers who are contemplating a new knowledge initiative. This book is an essential addition to theory and practice for KR and semantic technology and AI researchers and practitioners, who will benefit from Peirce's profound understanding of meaning and context.

Semantic AI in Knowledge Graphs

Download Semantic AI in Knowledge Graphs PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000911187
Total Pages : 217 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Semantic AI in Knowledge Graphs by : Sanju Tiwari

Download or read book Semantic AI in Knowledge Graphs written by Sanju Tiwari and published by CRC Press. This book was released on 2023-08-21 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Existing research papers do not have complete information in depth about the Semantic AI in Knowledge Graphs. This book has all the basic information required to gain in-depth knowledge of this field. Covers neuro-symbolic AI, explainable AI and deep learning to knowledge discover and mining, and knowledge representation and reasoning.

Designing and Building Enterprise Knowledge Graphs

Download Designing and Building Enterprise Knowledge Graphs PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1636391753
Total Pages : 168 pages
Book Rating : 4.6/5 (363 download)

DOWNLOAD NOW!


Book Synopsis Designing and Building Enterprise Knowledge Graphs by : Juan Sequeda

Download or read book Designing and Building Enterprise Knowledge Graphs written by Juan Sequeda and published by Morgan & Claypool Publishers. This book was released on 2021-08-05 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a guide to designing and building knowledge graphs from enterprise relational databases in practice. It presents a principled framework centered on mapping patterns to connect relational databases with knowledge graphs, the roles within an organization responsible for the knowledge graph, and the process that combines data and people. The content of this book is applicable to knowledge graphs being built either with property graph or RDF graph technologies. Knowledge graphs are fulfilling the vision of creating intelligent systems that integrate knowledge and data at large scale. Tech giants have adopted knowledge graphs for the foundation of next-generation enterprise data and metadata management, search, recommendation, analytics, intelligent agents, and more. We are now observing an increasing number of enterprises that seek to adopt knowledge graphs to develop a competitive edge. In order for enterprises to design and build knowledge graphs, they need to understand the critical data stored in relational databases. How can enterprises successfully adopt knowledge graphs to integrate data and knowledge, without boiling the ocean? This book provides the answers.

Semantic Web for the Working Ontologist

Download Semantic Web for the Working Ontologist PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0123859662
Total Pages : 369 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Semantic Web for the Working Ontologist by : Dean Allemang

Download or read book Semantic Web for the Working Ontologist written by Dean Allemang and published by Elsevier. This book was released on 2011-07-05 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL, Second Edition, discusses the capabilities of Semantic Web modeling languages, such as RDFS (Resource Description Framework Schema) and OWL (Web Ontology Language). Organized into 16 chapters, the book provides examples to illustrate the use of Semantic Web technologies in solving common modeling problems. It uses the life and works of William Shakespeare to demonstrate some of the most basic capabilities of the Semantic Web. The book first provides an overview of the Semantic Web and aspects of the Web. It then discusses semantic modeling and how it can support the development from chaotic information gathering to one characterized by information sharing, cooperation, and collaboration. It also explains the use of RDF to implement the Semantic Web by allowing information to be distributed over the Web, along with the use of SPARQL to access RDF data. Moreover, the reader is introduced to components that make up a Semantic Web deployment and how they fit together, the concept of inferencing in the Semantic Web, and how RDFS differs from other schema languages. Finally, the book considers the use of SKOS (Simple Knowledge Organization System) to manage vocabularies by taking advantage of the inferencing structure of RDFS-Plus. This book is intended for the working ontologist who is trying to create a domain model on the Semantic Web. - Updated with the latest developments and advances in Semantic Web technologies for organizing, querying, and processing information, including SPARQL, RDF and RDFS, OWL 2.0, and SKOS - Detailed information on the ontologies used in today's key web applications, including ecommerce, social networking, data mining, using government data, and more - Even more illustrative examples and case studies that demonstrate what semantic technologies are and how they work together to solve real-world problems

Graph-based Knowledge Representation

Download Graph-based Knowledge Representation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1848002866
Total Pages : 428 pages
Book Rating : 4.8/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Graph-based Knowledge Representation by : Michel Chein

Download or read book Graph-based Knowledge Representation written by Michel Chein and published by Springer Science & Business Media. This book was released on 2008-10-20 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a de?nition and study of a knowledge representation and r- soning formalism stemming from conceptual graphs, while focusing on the com- tational properties of this formalism. Knowledge can be symbolically represented in many ways. The knowledge representation and reasoning formalism presented here is a graph formalism – knowledge is represented by labeled graphs, in the graph theory sense, and r- soning mechanisms are based on graph operations, with graph homomorphism at the core. This formalism can thus be considered as related to semantic networks. Since their conception, semantic networks have faded out several times, but have always returned to the limelight. They faded mainly due to a lack of formal semantics and the limited reasoning tools proposed. They have, however, always rebounded - cause labeled graphs, schemas and drawings provide an intuitive and easily und- standable support to represent knowledge. This formalism has the visual qualities of any graphic model, and it is logically founded. This is a key feature because logics has been the foundation for knowledge representation and reasoning for millennia. The authors also focus substantially on computational facets of the presented formalism as they are interested in knowledge representation and reasoning formalisms upon which knowledge-based systems can be built to solve real problems. Since object structures are graphs, naturally graph homomorphism is the key underlying notion and, from a computational viewpoint, this moors calculus to combinatorics and to computer science domains in which the algorithmicqualitiesofgraphshavelongbeenstudied,asindatabasesandconstraint networks.

Knowledge Graphs and Semantic Web

Download Knowledge Graphs and Semantic Web PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783030913045
Total Pages : 331 pages
Book Rating : 4.9/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Knowledge Graphs and Semantic Web by : Boris Villazón-Terrazas

Download or read book Knowledge Graphs and Semantic Web written by Boris Villazón-Terrazas and published by Springer. This book was released on 2021-11-21 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed proceedings of the Third Iberoamerican Conference, KGSWC 2021, held in Kingsville, Texas, USA, in November 2021.* The 22 full and 2 short papers presented were carefully reviewed and selected from 85 submissions. The papers cover topics related to software and its engineering, information systems, software creation and management, World Wide Web, web data description languages, and others. *Due to the Covid-19 pandemic the conference was held virtually.

Probabilistic Graphical Models

Download Probabilistic Graphical Models PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262258358
Total Pages : 1270 pages
Book Rating : 4.2/5 (622 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Graphical Models by : Daphne Koller

Download or read book Probabilistic Graphical Models written by Daphne Koller and published by MIT Press. This book was released on 2009-07-31 with total page 1270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Rebooting AI

Download Rebooting AI PDF Online Free

Author :
Publisher : Vintage
ISBN 13 : 1524748269
Total Pages : 290 pages
Book Rating : 4.5/5 (247 download)

DOWNLOAD NOW!


Book Synopsis Rebooting AI by : Gary Marcus

Download or read book Rebooting AI written by Gary Marcus and published by Vintage. This book was released on 2019-09-10 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two leaders in the field offer a compelling analysis of the current state of the art and reveal the steps we must take to achieve a robust artificial intelligence that can make our lives better. “Finally, a book that tells us what AI is, what AI is not, and what AI could become if only we are ambitious and creative enough.” —Garry Kasparov, former world chess champion and author of Deep Thinking Despite the hype surrounding AI, creating an intelligence that rivals or exceeds human levels is far more complicated than we have been led to believe. Professors Gary Marcus and Ernest Davis have spent their careers at the forefront of AI research and have witnessed some of the greatest milestones in the field, but they argue that a computer beating a human in Jeopardy! does not signal that we are on the doorstep of fully autonomous cars or superintelligent machines. The achievements in the field thus far have occurred in closed systems with fixed sets of rules, and these approaches are too narrow to achieve genuine intelligence. The real world, in contrast, is wildly complex and open-ended. How can we bridge this gap? What will the consequences be when we do? Taking inspiration from the human mind, Marcus and Davis explain what we need to advance AI to the next level, and suggest that if we are wise along the way, we won't need to worry about a future of machine overlords. If we focus on endowing machines with common sense and deep understanding, rather than simply focusing on statistical analysis and gatherine ever larger collections of data, we will be able to create an AI we can trust—in our homes, our cars, and our doctors' offices. Rebooting AI provides a lucid, clear-eyed assessment of the current science and offers an inspiring vision of how a new generation of AI can make our lives better.