Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Searching For Frequent Sequential Patterns In Large Datasets
Download Searching For Frequent Sequential Patterns In Large Datasets full books in PDF, epub, and Kindle. Read online Searching For Frequent Sequential Patterns In Large Datasets ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Proceedings of the Third SIAM International Conference on Data Mining by : Daniel Barbara
Download or read book Proceedings of the Third SIAM International Conference on Data Mining written by Daniel Barbara and published by SIAM. This book was released on 2003-01-01 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third SIAM International Conference on Data Mining provided an open forum for the presentation, discussion and development of innovative algorithms, software and theories for data mining applications and data intensive computation. This volume includes 21 research papers.
Book Synopsis Mining Sequential Patterns from Large Data Sets by : Wei Wang
Download or read book Mining Sequential Patterns from Large Data Sets written by Wei Wang and published by Springer Science & Business Media. This book was released on 2005-07-26 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many applications, e.g., bioinformatics, web access traces, system u- lization logs, etc., the data is naturally in the form of sequences. It has been of great interests to analyze the sequential data to find their inherent char- teristics. The sequential pattern is one of the most widely studied models to capture such characteristics. Examples of sequential patterns include but are not limited to protein sequence motifs and web page navigation traces. In this book, we focus on sequential pattern mining. To meet different needs of various applications, several models of sequential patterns have been proposed. We do not only study the mathematical definitions and application domains of these models, but also the algorithms on how to effectively and efficiently find these patterns. The objective of this book is to provide computer scientists and domain - perts such as life scientists with a set of tools in analyzing and understanding the nature of various sequences by : (1) identifying the specific model(s) of - quential patterns that are most suitable, and (2) providing an efficient algorithm for mining these patterns. Chapter 1 INTRODUCTION Data Mining is the process of extracting implicit knowledge and discovery of interesting characteristics and patterns that are not explicitly represented in the databases. The techniques can play an important role in understanding data and in capturing intrinsic relationships among data instances. Data mining has been an active research area in the past decade and has been proved to be very useful.
Book Synopsis Sequence Data Mining by : Guozhu Dong
Download or read book Sequence Data Mining written by Guozhu Dong and published by Springer Science & Business Media. This book was released on 2007-10-31 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding sequence data, and the ability to utilize this hidden knowledge, will create a significant impact on many aspects of our society. Examples of sequence data include DNA, protein, customer purchase history, web surfing history, and more. This book provides thorough coverage of the existing results on sequence data mining as well as pattern types and associated pattern mining methods. It offers balanced coverage on data mining and sequence data analysis, allowing readers to access the state-of-the-art results in one place.
Book Synopsis Frequent Pattern Mining by : Charu C. Aggarwal
Download or read book Frequent Pattern Mining written by Charu C. Aggarwal and published by Springer. This book was released on 2014-08-29 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.
Book Synopsis Mining of Massive Datasets by : Jure Leskovec
Download or read book Mining of Massive Datasets written by Jure Leskovec and published by Cambridge University Press. This book was released on 2014-11-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Book Synopsis High-Utility Pattern Mining by : Philippe Fournier-Viger
Download or read book High-Utility Pattern Mining written by Philippe Fournier-Viger and published by Springer. This book was released on 2019-01-18 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of techniques for discovering high-utility patterns (patterns with a high importance) in data. It introduces the main types of high-utility patterns, as well as the theory and core algorithms for high-utility pattern mining, and describes recent advances, applications, open-source software, and research opportunities. It also discusses several types of discrete data, including customer transaction data and sequential data. The book consists of twelve chapters, seven of which are surveys presenting the main subfields of high-utility pattern mining, including itemset mining, sequential pattern mining, big data pattern mining, metaheuristic-based approaches, privacy-preserving pattern mining, and pattern visualization. The remaining five chapters describe key techniques and applications, such as discovering concise representations and regular patterns.
Book Synopsis Periodic Pattern Mining by : R. Uday Kiran
Download or read book Periodic Pattern Mining written by R. Uday Kiran and published by Springer Nature. This book was released on 2021-10-29 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the field of periodic pattern mining, reviews state-of-the-art techniques, discusses recent advances, and reviews open-source software. Periodic pattern mining is a popular and emerging research area in the field of data mining. It involves discovering all regularly occurring patterns in temporal databases. One of the major applications of periodic pattern mining is the analysis of customer transaction databases to discover sets of items that have been regularly purchased by customers. Discovering such patterns has several implications for understanding the behavior of customers. Since the first work on periodic pattern mining, numerous studies have been published and great advances have been made in this field. The book consists of three main parts: introduction, algorithms, and applications. The first chapter is an introduction to pattern mining and periodic pattern mining. The concepts of periodicity, periodic support, search space exploration techniques, and pruning strategies are discussed. The main types of algorithms are also presented such as periodic-frequent pattern growth, partial periodic pattern-growth, and periodic high-utility itemset mining algorithm. Challenges and research opportunities are reviewed. The chapters that follow present state-of-the-art techniques for discovering periodic patterns in (1) transactional databases, (2) temporal databases, (3) quantitative temporal databases, and (4) big data. Then, the theory on concise representations of periodic patterns is presented, as well as hiding sensitive information using privacy-preserving data mining techniques. The book concludes with several applications of periodic pattern mining, including applications in air pollution data analytics, accident data analytics, and traffic congestion analytics.
Book Synopsis Pattern Discovery Using Sequence Data Mining by : Pradeep Kumar
Download or read book Pattern Discovery Using Sequence Data Mining written by Pradeep Kumar and published by . This book was released on 2011-07-01 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book provides a comprehensive view of sequence mining techniques, and present current research and case studies in Pattern Discovery in Sequential data authored by researchers and practitioners"--
Book Synopsis R: Mining spatial, text, web, and social media data by : Bater Makhabel
Download or read book R: Mining spatial, text, web, and social media data written by Bater Makhabel and published by Packt Publishing Ltd. This book was released on 2017-06-19 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: Create data mining algorithms About This Book Develop a strong strategy to solve predictive modeling problems using the most popular data mining algorithms Real-world case studies will take you from novice to intermediate to apply data mining techniques Deploy cutting-edge sentiment analysis techniques to real-world social media data using R Who This Book Is For This Learning Path is for R developers who are looking to making a career in data analysis or data mining. Those who come across data mining problems of different complexities from web, text, numerical, political, and social media domains will find all information in this single learning path. What You Will Learn Discover how to manipulate data in R Get to know top classification algorithms written in R Explore solutions written in R based on R Hadoop projects Apply data management skills in handling large data sets Acquire knowledge about neural network concepts and their applications in data mining Create predictive models for classification, prediction, and recommendation Use various libraries on R CRAN for data mining Discover more about data potential, the pitfalls, and inferencial gotchas Gain an insight into the concepts of supervised and unsupervised learning Delve into exploratory data analysis Understand the minute details of sentiment analysis In Detail Data mining is the first step to understanding data and making sense of heaps of data. Properly mined data forms the basis of all data analysis and computing performed on it. This learning path will take you from the very basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining. You will learn how to manipulate data with R using code snippets and how to mine frequent patterns, association, and correlation while working with R programs. You will discover how to write code for various predication models, stream data, and time-series data. You will also be introduced to solutions written in R based on R Hadoop projects. Now that you are comfortable with data mining with R, you will move on to implementing your knowledge with the help of end-to-end data mining projects. You will learn how to apply different mining concepts to various statistical and data applications in a wide range of fields. At this stage, you will be able to complete complex data mining cases and handle any issues you might encounter during projects. After this, you will gain hands-on experience of generating insights from social media data. You will get detailed instructions on how to obtain, process, and analyze a variety of socially-generated data while providing a theoretical background to accurately interpret your findings. You will be shown R code and examples of data that can be used as a springboard as you get the chance to undertake your own analyses of business, social, or political data. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Learning Data Mining with R by Bater Makhabel R Data Mining Blueprints by Pradeepta Mishra Social Media Mining with R by Nathan Danneman and Richard Heimann Style and approach A complete package with which will take you from the basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining.
Book Synopsis Proceedings of the Fourth SIAM International Conference on Data Mining by : Michael W. Berry
Download or read book Proceedings of the Fourth SIAM International Conference on Data Mining written by Michael W. Berry and published by SIAM. This book was released on 2004-01-01 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fourth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. This is reflected in the talks by the four keynote speakers who discuss data usability issues in systems for data mining in science and engineering, issues raised by new technologies that generate biological data, ways to find complex structured patterns in linked data, and advances in Bayesian inference techniques. This proceedings includes 61 research papers.
Book Synopsis Data Mining: Concepts and Techniques by : Jiawei Han
Download or read book Data Mining: Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Book Synopsis Proceedings of the Fifth SIAM International Conference on Data Mining by : Hillol Kargupta
Download or read book Proceedings of the Fifth SIAM International Conference on Data Mining written by Hillol Kargupta and published by SIAM. This book was released on 2005-04-01 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Fifth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. Advances in information technology and data collection methods have led to the availability of large data sets in commercial enterprises and in a wide variety of scientific and engineering disciplines. The field of data mining draws upon extensive work in areas such as statistics, machine learning, pattern recognition, databases, and high performance computing to discover interesting and previously unknown information in data. This conference results in data mining, including applications, algorithms, software, and systems.
Download or read book Memory Systems written by Bruce Jacob and published by Morgan Kaufmann. This book was released on 2010-07-28 with total page 1017 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is your memory hierarchy stopping your microprocessor from performing at the high level it should be? Memory Systems: Cache, DRAM, Disk shows you how to resolve this problem. The book tells you everything you need to know about the logical design and operation, physical design and operation, performance characteristics and resulting design trade-offs, and the energy consumption of modern memory hierarchies. You learn how to to tackle the challenging optimization problems that result from the side-effects that can appear at any point in the entire hierarchy.As a result you will be able to design and emulate the entire memory hierarchy. - Understand all levels of the system hierarchy -Xcache, DRAM, and disk. - Evaluate the system-level effects of all design choices. - Model performance and energy consumption for each component in the memory hierarchy.
Book Synopsis Advances in Database Technology EDBT '96 by : Peter Apers
Download or read book Advances in Database Technology EDBT '96 written by Peter Apers and published by Springer. This book was released on 1996-03-18 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the refereed proceedings of the Fifth International Conference on Extending Database Technology, EDBT'96, held in Avignon, France in March 1996. The 31 full revised papers included were selected from a total of 178 submissions; also included are some industrial-track papers, contributed by partners of several ESPRIT projects. The volume is organized in topical sections on data mining, active databases, design tools, advanced DBMS, optimization, warehousing, system issues, temporal databases, the web and hypermedia, performance, workflow management, database design, and parallel databases.
Book Synopsis Advanced Data Mining and Applications by : Xue Li
Download or read book Advanced Data Mining and Applications written by Xue Li and published by Springer Science & Business Media. This book was released on 2005-07-12 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Conference on Advanced Data Mining and Applications, ADMA 2005, held in Wuhan, China in July 2005. The conference was focused on sophisticated techniques and tools that can handle new fields of data mining, e.g. spatial data mining, biomedical data mining, and mining on high-speed and time-variant data streams; an expansion of data mining to new applications is also strived for. The 25 revised full papers and 75 revised short papers presented were carefully peer-reviewed and selected from over 600 submissions. The papers are organized in topical sections on association rules, classification, clustering, novel algorithms, text mining, multimedia mining, sequential data mining and time series mining, web mining, biomedical mining, advanced applications, security and privacy issues, spatial data mining, and streaming data mining.
Book Synopsis Finding Frequent Patterns from Graph Datasets by : Michihiro Kuramochi
Download or read book Finding Frequent Patterns from Graph Datasets written by Michihiro Kuramochi and published by . This book was released on 2005 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren
Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.