Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Scipy And Numpy
Download Scipy And Numpy full books in PDF, epub, and Kindle. Read online Scipy And Numpy ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book SciPy and NumPy written by Eli Bressert and published by "O'Reilly Media, Inc.". This book was released on 2012 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Optimizing and boosting your Python programming"--Cover.
Book Synopsis Numerical Python by : Robert Johansson
Download or read book Numerical Python written by Robert Johansson and published by Apress. This book was released on 2018-12-24 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. What You'll Learn Work with vectors and matrices using NumPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Review statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its related ecosystem for numerical computing.
Book Synopsis Elegant SciPy by : Juan Nunez-Iglesias
Download or read book Elegant SciPy written by Juan Nunez-Iglesias and published by "O'Reilly Media, Inc.". This book was released on 2017-08-11 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Welcome to Scientific Python and its community. If you’re a scientist who programs with Python, this practical guide not only teaches you the fundamental parts of SciPy and libraries related to it, but also gives you a taste for beautiful, easy-to-read code that you can use in practice. You’ll learn how to write elegant code that’s clear, concise, and efficient at executing the task at hand. Throughout the book, you’ll work with examples from the wider scientific Python ecosystem, using code that illustrates principles outlined in the book. Using actual scientific data, you’ll work on real-world problems with SciPy, NumPy, Pandas, scikit-image, and other Python libraries. Explore the NumPy array, the data structure that underlies numerical scientific computation Use quantile normalization to ensure that measurements fit a specific distribution Represent separate regions in an image with a Region Adjacency Graph Convert temporal or spatial data into frequency domain data with the Fast Fourier Transform Solve sparse matrix problems, including image segmentations, with SciPy’s sparse module Perform linear algebra by using SciPy packages Explore image alignment (registration) with SciPy’s optimize module Process large datasets with Python data streaming primitives and the Toolz library
Download or read book Guide to NumPy written by Travis Oliphant and published by CreateSpace. This book was released on 2015-09-15 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of Travis Oliphant's A Guide to NumPy originally published electronically in 2006. It is designed to be a reference that can be used by practitioners who are familiar with Python but want to learn more about NumPy and related tools. In this updated edition, new perspectives are shared as well as descriptions of new distributed processing tools in the ecosystem, and how Numba can be used to compile code using NumPy arrays. Travis Oliphant is the co-founder and CEO of Continuum Analytics. Continuum Analytics develops Anaconda, the leading modern open source analytics platform powered by Python. Travis, who is a passionate advocate of open source technology, has a Ph.D. from Mayo Clinic and B.S. and M.S. degrees in Mathematics and Electrical Engineering from Brigham Young University. Since 1997, he has worked extensively with Python for computational and data science. He was the primary creator of the NumPy package and founding contributor to the SciPy package. He was also a co-founder and past board member of NumFOCUS, a non-profit for reproducible and accessible science that supports the PyData stack. He also served on the board of the Python Software Foundation.
Book Synopsis Python for Data Analysis by : Wes McKinney
Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Book Synopsis Python Data Science Handbook by : Jake VanderPlas
Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Book Synopsis Learning NumPy Array by : Ivan Idris
Download or read book Learning NumPy Array written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2014-06-13 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.
Book Synopsis Machine Learning with Python Cookbook by : Chris Albon
Download or read book Machine Learning with Python Cookbook written by Chris Albon and published by "O'Reilly Media, Inc.". This book was released on 2018-03-09 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide provides nearly 200 self-contained recipes to help you solve machine learning challenges you may encounter in your daily work. If you’re comfortable with Python and its libraries, including pandas and scikit-learn, you’ll be able to address specific problems such as loading data, handling text or numerical data, model selection, and dimensionality reduction and many other topics. Each recipe includes code that you can copy and paste into a toy dataset to ensure that it actually works. From there, you can insert, combine, or adapt the code to help construct your application. Recipes also include a discussion that explains the solution and provides meaningful context. This cookbook takes you beyond theory and concepts by providing the nuts and bolts you need to construct working machine learning applications. You’ll find recipes for: Vectors, matrices, and arrays Handling numerical and categorical data, text, images, and dates and times Dimensionality reduction using feature extraction or feature selection Model evaluation and selection Linear and logical regression, trees and forests, and k-nearest neighbors Support vector machines (SVM), naïve Bayes, clustering, and neural networks Saving and loading trained models
Book Synopsis IPython Interactive Computing and Visualization Cookbook by : Cyrille Rossant
Download or read book IPython Interactive Computing and Visualization Cookbook written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2014-09-25 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Download or read book NumPy Cookbook written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2012-10-25 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in Cookbook style, the code examples will take your Numpy skills to the next level. This book will take Python developers with basic Numpy skills to the next level through some practical recipes.
Book Synopsis Learning SciPy for Numerical and Scientific Computing - Second Edition by : Sergio J. Rojas G.
Download or read book Learning SciPy for Numerical and Scientific Computing - Second Edition written by Sergio J. Rojas G. and published by Packt Publishing Ltd. This book was released on 2015-02-26 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book targets programmers and scientists who have basic Python knowledge and who are keen to perform scientific and numerical computations with SciPy.
Book Synopsis Python Data Analytics by : Fabio Nelli
Download or read book Python Data Analytics written by Fabio Nelli and published by Apress. This book was released on 2018-09-27 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data. What You'll LearnUnderstand the core concepts of data analysis and the Python ecosystem Go in depth with pandas for reading, writing, and processing data Use tools and techniques for data visualization and image analysis Examine popular deep learning libraries Keras, Theano,TensorFlow, and PyTorch Who This Book Is For Experienced Python developers who need to learn about Pythonic tools for data analysis
Book Synopsis SciPy Recipes by : V Kishore Ayyadevara
Download or read book SciPy Recipes written by V Kishore Ayyadevara and published by Packt Publishing Ltd. This book was released on 2017-12-20 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tackle the most sophisticated problems associated with scientific computing and data manipulation using SciPy Key Features Covers a wide range of data science tasks using SciPy, NumPy, pandas, and matplotlib Effective recipes on advanced scientific computations, statistics, data wrangling, data visualization, and more A must-have book if you're looking to solve your data-related problems using SciPy, on-the-go Book Description With the SciPy Stack, you get the power to effectively process, manipulate, and visualize your data using the popular Python language. Utilizing SciPy correctly can sometimes be a very tricky proposition. This book provides the right techniques so you can use SciPy to perform different data science tasks with ease. This book includes hands-on recipes for using the different components of the SciPy Stack such as NumPy, SciPy, matplotlib, and pandas, among others. You will use these libraries to solve real-world problems in linear algebra, numerical analysis, data visualization, and much more. The recipes included in the book will ensure you get a practical understanding not only of how a particular feature in SciPy Stack works, but also of its application to real-world problems. The independent nature of the recipes also ensure that you can pick up any one and learn about a particular feature of SciPy without reading through the other recipes, thus making the book a very handy and useful guide. What you will learn Get a solid foundation in scientific computing using Python Master common tasks related to SciPy and associated libraries such as NumPy, pandas, and matplotlib Perform mathematical operations such as linear algebra and work with the statistical and probability functions in SciPy Master advanced computing such as Discrete Fourier Transform and K-means with the SciPy Stack Implement data wrangling tasks efficiently using pandas Visualize your data through various graphs and charts using matplotlib Who this book is for Python developers, aspiring data scientists, and analysts who want to get started with scientific computing using Python will find this book an indispensable resource. If you want to learn how to manipulate and visualize your data using the SciPy Stack, this book will also help you. A basic understanding of Python programming is all you need to get started.
Book Synopsis Raspberry Pi Supercomputing and Scientific Programming by : Ashwin Pajankar
Download or read book Raspberry Pi Supercomputing and Scientific Programming written by Ashwin Pajankar and published by Apress. This book was released on 2017-05-25 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build an inexpensive cluster of multiple Raspberry Pi computers and install all the required libraries to write parallel and scientific programs in Python 3. This book covers setting up your Raspberry Pis, installing the necessary software, and making a cluster of multiple Pis. Once the cluster is built, its power has to be exploited by means of programs to run on it. So, Raspberry Pi Supercomputing and Scientific Programming teaches you to code the cluster with the MPI4PY library of Python 3. Along the way, you will learn the concepts of the Message Passing Interface (MPI) standards and will explore the fundamentals of parallel programming on your inexpensive cluster. This will make this book a great starting point for supercomputing enthusiasts who want to get started with parallel programming. The book finishes with details of symbolic mathematics and scientific and numerical programming in Python, using SymPi, SciPy, NumPy, and Matplotlib. You’ll see how to process signals and images, carry out calculations using linear algebra, and visualize your results, all using Python code. With the power of a Raspberry Pi supercomputer at your fingertips, data-intensive scientific programming becomes a reality at home. What You Will Learn Discover the essentials of supercomputing Build a low-cost cluster of Raspberry Pis at home Harness the power of parallel programming and the Message Passing Interface (MPI) Use your Raspberry Pi for symbolic, numerical, and scientific programming Who This Book Is For Python 3 developers who seek the knowledge of parallel programming, Raspberry Pi enthusiasts, researchers, and the scientific Python community.
Book Synopsis Scientific Computing with Python - Second Edition by : CLAUS. FUHRER
Download or read book Scientific Computing with Python - Second Edition written by CLAUS. FUHRER and published by . This book was released on 2021-07-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage this example-packed, comprehensive guide for all your Python computational needs Key Features: Learn the first steps within Python to highly specialized concepts Explore examples and code snippets taken from typical programming situations within scientific computing. Delve into essential computer science concepts like iterating, object-oriented programming, testing, and MPI presented in strong connection to applications within scientific computing. Book Description: Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing. What You Will Learn: Understand the building blocks of computational mathematics, linear algebra, and related Python objects Use Matplotlib to create high-quality figures and graphics to draw and visualize results Apply object-oriented programming (OOP) to scientific computing in Python Discover how to use pandas to enter the world of data processing Handle exceptions for writing reliable and usable code Cover manual and automatic aspects of testing for scientific programming Get to grips with parallel computing to increase computation speed Who this book is for: This book is for students with a mathematical background, university teachers designing modern courses in programming, data scientists, researchers, developers, and anyone who wants to perform scientific computation in Python.
Book Synopsis Learning IPython for Interactive Computing and Data Visualization by : Cyrille Rossant
Download or read book Learning IPython for Interactive Computing and Data Visualization written by Cyrille Rossant and published by Packt Publishing Ltd. This book was released on 2015-10-21 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get started with Python for data analysis and numerical computing in the Jupyter notebook About This Book Learn the basics of Python in the Jupyter Notebook Analyze and visualize data with pandas, NumPy, matplotlib, and seaborn Perform highly-efficient numerical computations with Numba, Cython, and ipyparallel Who This Book Is For This book targets students, teachers, researchers, engineers, analysts, journalists, hobbyists, and all data enthusiasts who are interested in analyzing and visualizing real-world datasets. If you are new to programming and data analysis, this book is exactly for you. If you're already familiar with another language or analysis software, you will also appreciate this introduction to the Python data analysis platform. Finally, there are more technical topics for advanced readers. No prior experience is required; this book contains everything you need to know. What You Will Learn Install Anaconda and code in Python in the Jupyter Notebook Load and explore datasets interactively Perform complex data manipulations effectively with pandas Create engaging data visualizations with matplotlib and seaborn Simulate mathematical models with NumPy Visualize and process images interactively in the Jupyter Notebook with scikit-image Accelerate your code with Numba, Cython, and IPython.parallel Extend the Notebook interface with HTML, JavaScript, and D3 In Detail Python is a user-friendly and powerful programming language. IPython offers a convenient interface to the language and its analysis libraries, while the Jupyter Notebook is a rich environment well-adapted to data science and visualization. Together, these open source tools are widely used by beginners and experts around the world, and in a huge variety of fields and endeavors. This book is a beginner-friendly guide to the Python data analysis platform. After an introduction to the Python language, IPython, and the Jupyter Notebook, you will learn how to analyze and visualize data on real-world examples, how to create graphical user interfaces for image processing in the Notebook, and how to perform fast numerical computations for scientific simulations with NumPy, Numba, Cython, and ipyparallel. By the end of this book, you will be able to perform in-depth analyses of all sorts of data. Style and approach This is a hands-on beginner-friendly guide to analyze and visualize data on real-world examples with Python and the Jupyter Notebook.
Book Synopsis NumPy Beginner's Guide (Second Edition) by : Ivan Idris
Download or read book NumPy Beginner's Guide (Second Edition) written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2013-04-25 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is written in beginner’s guide style with each aspect of NumPy demonstrated with real world examples and required screenshots.If you are a programmer, scientist, or engineer who has basic Python knowledge and would like to be able to do numerical computations with Python, this book is for you. No prior knowledge of NumPy is required.