Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Scalable Loss Calibrated Bayesian Decision Theory And Preference Learning
Download Scalable Loss Calibrated Bayesian Decision Theory And Preference Learning full books in PDF, epub, and Kindle. Read online Scalable Loss Calibrated Bayesian Decision Theory And Preference Learning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Hendrik Blockeel
Download or read book Machine Learning and Knowledge Discovery in Databases written by Hendrik Blockeel and published by Springer. This book was released on 2013-08-28 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-volume set LNAI 8188, 8189 and 8190 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers are organized in topical sections on reinforcement learning; Markov decision processes; active learning and optimization; learning from sequences; time series and spatio-temporal data; data streams; graphs and networks; social network analysis; natural language processing and information extraction; ranking and recommender systems; matrix and tensor analysis; structured output prediction, multi-label and multi-task learning; transfer learning; bayesian learning; graphical models; nearest-neighbor methods; ensembles; statistical learning; semi-supervised learning; unsupervised learning; subgroup discovery, outlier detection and anomaly detection; privacy and security; evaluation; applications; and medical applications.
Book Synopsis Preference Learning by : Johannes Fürnkranz
Download or read book Preference Learning written by Johannes Fürnkranz and published by Springer Science & Business Media. This book was released on 2010-11-19 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. It involves learning from observations that reveal information about the preferences of an individual or a class of individuals. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. And, generalizing beyond training data, models thus learned may be used for preference prediction. This is the first book dedicated to this topic, and the treatment is comprehensive. The editors first offer a thorough introduction, including a systematic categorization according to learning task and learning technique, along with a unified notation. The first half of the book is organized into parts on label ranking, instance ranking, and object ranking; while the second half is organized into parts on applications of preference learning in multiattribute domains, information retrieval, and recommender systems. The book will be of interest to researchers and practitioners in artificial intelligence, in particular machine learning and data mining, and in fields such as multicriteria decision-making and operations research.
Book Synopsis Decision Theory with a Human Face by : Richard Bradley
Download or read book Decision Theory with a Human Face written by Richard Bradley and published by Cambridge University Press. This book was released on 2017-10-26 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores how decision-makers can manage uncertainty that varies in both kind and severity by extending and supplementing Bayesian decision theory.
Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman
Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Book Synopsis Preference, Belief, and Similarity by : Amos Tversky
Download or read book Preference, Belief, and Similarity written by Amos Tversky and published by MIT Press. This book was released on 2003-11-21 with total page 1046 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amos Tversky (1937–1996), a towering figure in cognitive and mathematical psychology, devoted his professional life to the study of similarity, judgment, and decision making. He had a unique ability to master the technicalities of normative ideals and then to intuit and demonstrate experimentally their systematic violation due to the vagaries and consequences of human information processing. He created new areas of study and helped transform disciplines as varied as economics, law, medicine, political science, philosophy, and statistics. This book collects forty of Tversky's articles, selected by him in collaboration with the editor during the last months of Tversky's life. It is divided into three sections: Similarity, Judgment, and Preferences. The Preferences section is subdivided into Probabilistic Models of Choice, Choice under Risk and Uncertainty, and Contingent Preferences. Included are several articles written with his frequent collaborator, Nobel Prize-winning economist Daniel Kahneman.
Book Synopsis Recent Trends in Analysis of Images, Social Networks and Texts by : Evgeny Burnaev
Download or read book Recent Trends in Analysis of Images, Social Networks and Texts written by Evgeny Burnaev and published by Springer Nature. This book was released on 2022-08-29 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised selected papers of the 10th International Conference on Analysis of Images, Social Networks and Texts, AIST 2021, held in Tbilisi, Georgia, in December 2021. Due to the COVID-19 pandemic the conference was held in hybrid mode. The 17 full papers were carefully reviewed and selected from 118 submissions, out of which 92 were sent to peer review. The papers are organized in topical sections on natural language processing; computer vision; data analysis and machine learning; social network analysis; theoretical machine learning and optimisation.
Book Synopsis Fundamentals of Nonparametric Bayesian Inference by : Subhashis Ghosal
Download or read book Fundamentals of Nonparametric Bayesian Inference written by Subhashis Ghosal and published by Cambridge University Press. This book was released on 2017-06-26 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.
Book Synopsis Decision Making Under Uncertainty by : Mykel J. Kochenderfer
Download or read book Decision Making Under Uncertainty written by Mykel J. Kochenderfer and published by MIT Press. This book was released on 2015-07-24 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.
Book Synopsis Imbalanced Classification with Python by : Jason Brownlee
Download or read book Imbalanced Classification with Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2020-01-14 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Imbalanced classification are those classification tasks where the distribution of examples across the classes is not equal. Cut through the equations, Greek letters, and confusion, and discover the specialized techniques data preparation techniques, learning algorithms, and performance metrics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover how to confidently develop robust models for your own imbalanced classification projects.
Book Synopsis Statistical Evaluation of Diagnostic Performance by : Kelly H. Zou
Download or read book Statistical Evaluation of Diagnostic Performance written by Kelly H. Zou and published by CRC Press. This book was released on 2016-04-19 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are releva
Book Synopsis Statistical Rethinking by : Richard McElreath
Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Book Synopsis Discrete Choice Methods with Simulation by : Kenneth Train
Download or read book Discrete Choice Methods with Simulation written by Kenneth Train and published by Cambridge University Press. This book was released on 2009-07-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Book Synopsis Bandit Algorithms by : Tor Lattimore
Download or read book Bandit Algorithms written by Tor Lattimore and published by Cambridge University Press. This book was released on 2020-07-16 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.
Book Synopsis Entrepreneurial Action by : Andrew C. Corbett
Download or read book Entrepreneurial Action written by Andrew C. Corbett and published by Emerald Group Publishing. This book was released on 2012-07-17 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 14 addresses the central issue of entrepreneurial action: while many factors are important to the phenomenon of entrepreneurship, entrepreneurship does not happen until someone takes action!
Book Synopsis Hierarchical Modeling and Analysis for Spatial Data by : Sudipto Banerjee
Download or read book Hierarchical Modeling and Analysis for Spatial Data written by Sudipto Banerjee and published by CRC Press. This book was released on 2003-12-17 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis,
Book Synopsis Bayesian Modeling and Computation in Python by : Osvaldo A. Martin
Download or read book Bayesian Modeling and Computation in Python written by Osvaldo A. Martin and published by CRC Press. This book was released on 2021-12-28 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics. This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.
Book Synopsis Advances in Large Margin Classifiers by : Alexander J. Smola
Download or read book Advances in Large Margin Classifiers written by Alexander J. Smola and published by MIT Press. This book was released on 2000 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.