Flexible Bayesian Regression Modelling

Download Flexible Bayesian Regression Modelling PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128158638
Total Pages : 304 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Flexible Bayesian Regression Modelling by : Yanan Fan

Download or read book Flexible Bayesian Regression Modelling written by Yanan Fan and published by Academic Press. This book was released on 2019-10-30 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sample sizes, necessitating the need for considerable flexibility in modeling techniques. It reviews three forms of flexibility: methods which provide flexibility in their error distribution; methods which model non-central parts of the distribution (such as quantile regression); and finally models that allow the mean function to be flexible (such as spline models). Each chapter discusses the key aspects of fitting a regression model. R programs accompany the methods. This book is particularly relevant to non-specialist practitioners with intermediate mathematical training seeking to apply Bayesian approaches in economics, biology, finance, engineering and medicine. - Introduces powerful new nonparametric Bayesian regression techniques to classically trained practitioners - Focuses on approaches offering both superior power and methodological flexibility - Supplemented with instructive and relevant R programs within the text - Covers linear regression, nonlinear regression and quantile regression techniques - Provides diverse disciplinary case studies for correlation and optimization problems drawn from Bayesian analysis 'in the wild'

Handbook of Bayesian Variable Selection

Download Handbook of Bayesian Variable Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000510204
Total Pages : 491 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse

Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material

Handbook of Bayesian Variable Selection

Download Handbook of Bayesian Variable Selection PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000510255
Total Pages : 762 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Bayesian Variable Selection by : Mahlet G. Tadesse

Download or read book Handbook of Bayesian Variable Selection written by Mahlet G. Tadesse and published by CRC Press. This book was released on 2021-12-24 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian variable selection has experienced substantial developments over the past 30 years with the proliferation of large data sets. Identifying relevant variables to include in a model allows simpler interpretation, avoids overfitting and multicollinearity, and can provide insights into the mechanisms underlying an observed phenomenon. Variable selection is especially important when the number of potential predictors is substantially larger than the sample size and sparsity can reasonably be assumed. The Handbook of Bayesian Variable Selection provides a comprehensive review of theoretical, methodological and computational aspects of Bayesian methods for variable selection. The topics covered include spike-and-slab priors, continuous shrinkage priors, Bayes factors, Bayesian model averaging, partitioning methods, as well as variable selection in decision trees and edge selection in graphical models. The handbook targets graduate students and established researchers who seek to understand the latest developments in the field. It also provides a valuable reference for all interested in applying existing methods and/or pursuing methodological extensions. Features: Provides a comprehensive review of methods and applications of Bayesian variable selection. Divided into four parts: Spike-and-Slab Priors; Continuous Shrinkage Priors; Extensions to various Modeling; Other Approaches to Bayesian Variable Selection. Covers theoretical and methodological aspects, as well as worked out examples with R code provided in the online supplement. Includes contributions by experts in the field. Supported by a website with code, data, and other supplementary material

Case Studies in Applied Bayesian Data Science

Download Case Studies in Applied Bayesian Data Science PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030425533
Total Pages : 415 pages
Book Rating : 4.0/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Case Studies in Applied Bayesian Data Science by : Kerrie L. Mengersen

Download or read book Case Studies in Applied Bayesian Data Science written by Kerrie L. Mengersen and published by Springer Nature. This book was released on 2020-05-28 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a range of substantive applied problems within Bayesian Statistics along with their Bayesian solutions, this book arises from a research program at CIRM in France in the second semester of 2018, which supported Kerrie Mengersen as a visiting Jean-Morlet Chair and Pierre Pudlo as the local Research Professor. The field of Bayesian statistics has exploded over the past thirty years and is now an established field of research in mathematical statistics and computer science, a key component of data science, and an underpinning methodology in many domains of science, business and social science. Moreover, while remaining naturally entwined, the three arms of Bayesian statistics, namely modelling, computation and inference, have grown into independent research fields. While the research arms of Bayesian statistics continue to grow in many directions, they are harnessed when attention turns to solving substantive applied problems. Each such problem set has its own challenges and hence draws from the suite of research a bespoke solution. The book will be useful for both theoretical and applied statisticians, as well as practitioners, to inspect these solutions in the context of the problems, in order to draw further understanding, awareness and inspiration.

Statistical Learning with Sparsity

Download Statistical Learning with Sparsity PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498712177
Total Pages : 354 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Statistical Learning with Sparsity by : Trevor Hastie

Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Inference in Hidden Markov Models

Download Inference in Hidden Markov Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387289828
Total Pages : 656 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Inference in Hidden Markov Models by : Olivier Cappé

Download or read book Inference in Hidden Markov Models written by Olivier Cappé and published by Springer Science & Business Media. This book was released on 2006-04-12 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

Machine Learning and Knowledge Discovery in Databases

Download Machine Learning and Knowledge Discovery in Databases PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642159389
Total Pages : 652 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases by : José L. Balcázar

Download or read book Machine Learning and Knowledge Discovery in Databases written by José L. Balcázar and published by Springer Science & Business Media. This book was released on 2010-09-13 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2010, held in Barcelona, Spain, in September 2010. The 120 revised full papers presented in three volumes, together with 12 demos (out of 24 submitted demos), were carefully reviewed and selected from 658 paper submissions. In addition, 7 ML and 7 DM papers were distinguished by the program chairs on the basis of their exceptional scientific quality and high impact on the field. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. A topic widely explored from both ML and DM perspectives was graphs, with motivations ranging from molecular chemistry to social networks.

Economic Analysis of the Digital Economy

Download Economic Analysis of the Digital Economy PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 022620684X
Total Pages : 510 pages
Book Rating : 4.2/5 (262 download)

DOWNLOAD NOW!


Book Synopsis Economic Analysis of the Digital Economy by : Avi Goldfarb

Download or read book Economic Analysis of the Digital Economy written by Avi Goldfarb and published by University of Chicago Press. This book was released on 2015-05-08 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a small and growing literature that explores the impact of digitization in a variety of contexts, but its economic consequences, surprisingly, remain poorly understood. This volume aims to set the agenda for research in the economics of digitization, with each chapter identifying a promising area of research. "Economics of Digitization "identifies urgent topics with research already underway that warrant further exploration from economists. In addition to the growing importance of digitization itself, digital technologies have some features that suggest that many well-studied economic models may not apply and, indeed, so many aspects of the digital economy throw normal economics in a loop. "Economics of Digitization" will be one of the first to focus on the economic implications of digitization and to bring together leading scholars in the economics of digitization to explore emerging research.

Bayesian Theory and Applications

Download Bayesian Theory and Applications PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199695601
Total Pages : 717 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Theory and Applications by : Paul Damien

Download or read book Bayesian Theory and Applications written by Paul Damien and published by Oxford University Press. This book was released on 2013-01-24 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.

Geographically Weighted Regression

Download Geographically Weighted Regression PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470855258
Total Pages : 282 pages
Book Rating : 4.4/5 (78 download)

DOWNLOAD NOW!


Book Synopsis Geographically Weighted Regression by : A. Stewart Fotheringham

Download or read book Geographically Weighted Regression written by A. Stewart Fotheringham and published by John Wiley & Sons. This book was released on 2003-02-21 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geographical Weighted Regression (GWR) is a new local modelling technique for analysing spatial analysis. This technique allows local as opposed to global models of relationships to be measured and mapped. This is the first and only book on this technique, offering comprehensive coverage on this new 'hot' topic in spatial analysis. * Provides step-by-step examples of how to use the GWR model using data sets and examples on issues such as house price determinants, educational attainment levels and school performance statistics * Contains a broad discussion of and basic concepts on GWR through to ideas on statistical inference for GWR models * uniquely features accompanying author-written software that allows users to undertake sophisticated and complex forms of GWR within a user-friendly, Windows-based, front-end (see book for details).

Scalable Optimization via Probabilistic Modeling

Download Scalable Optimization via Probabilistic Modeling PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540349545
Total Pages : 363 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Scalable Optimization via Probabilistic Modeling by : Martin Pelikan

Download or read book Scalable Optimization via Probabilistic Modeling written by Martin Pelikan and published by Springer. This book was released on 2007-01-12 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.

Scaling Up Machine Learning

Download Scaling Up Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521192242
Total Pages : 493 pages
Book Rating : 4.5/5 (211 download)

DOWNLOAD NOW!


Book Synopsis Scaling Up Machine Learning by : Ron Bekkerman

Download or read book Scaling Up Machine Learning written by Ron Bekkerman and published by Cambridge University Press. This book was released on 2012 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This integrated collection covers a range of parallelization platforms, concurrent programming frameworks and machine learning settings, with case studies.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Symbolic and Quantitative Approaches to Reasoning with Uncertainty

Download Symbolic and Quantitative Approaches to Reasoning with Uncertainty PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642029051
Total Pages : 951 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Symbolic and Quantitative Approaches to Reasoning with Uncertainty by : Claudio Sossai

Download or read book Symbolic and Quantitative Approaches to Reasoning with Uncertainty written by Claudio Sossai and published by Springer Science & Business Media. This book was released on 2009-06-19 with total page 951 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2009, held in Verona (Italy), July 1–3, 2009. The biennial ECSQARU conferences are a major forum for advances in the theory and practice of reasoning under uncertainty. The ?rst ECSQARU conf- ence was held in Marseille (1991), and since then it has been held in Granada (1993), Fribourg (1995), Bonn (1997), London (1999), Toulouse (2001), Aalborg (2003), Barcelona (2005) and Hammamet (2007). The 76 papers gathered in this volume were selected out of 118 submissions from 34 countries, after a rigorous review process. In addition, the conference included invited lectures by three outstanding researchers in the area: Isabelle Bloch (“Fuzzy and bipolar mathematical morphology, applications in spatial reasoning”), Petr Cintula (“From (deductive) fuzzy logic to (logic-based) fuzzy mathematics”),andDaniele Mundici(“Conditionalsandindependence inma- valued logics”). Twospecialsessionswerepresentedduringtheconference:“Conditioning,- dependence, inference” (organizedby Giulianella Coletti and BarbaraVantaggi) and “Mathematicalfuzzy logic” (organizedby Stefano Aguzzoli,Brunella Gerla, Llu´ ?s Godo, Vincenzo Marra, Franco Montagna) On the whole, the program of the conference provided a broad, rich and up-to-date perspective of the current high-level research in the area which is re?ected in the contents of this volume.

Handbook of Graphs and Networks

Download Handbook of Graphs and Networks PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527606335
Total Pages : 417 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Graphs and Networks by : Stefan Bornholdt

Download or read book Handbook of Graphs and Networks written by Stefan Bornholdt and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex interacting networks are observed in systems from such diverse areas as physics, biology, economics, ecology, and computer science. For example, economic or social interactions often organize themselves in complex network structures. Similar phenomena are observed in traffic flow and in communication networks as the internet. In current problems of the Biosciences, prominent examples are protein networks in the living cell, as well as molecular networks in the genome. On larger scales one finds networks of cells as in neural networks, up to the scale of organisms in ecological food webs. This book defines the field of complex interacting networks in its infancy and presents the dynamics of networks and their structure as a key concept across disciplines. The contributions present common underlying principles of network dynamics and their theoretical description and are of interest to specialists as well as to the non-specialized reader looking for an introduction to this new exciting field. Theoretical concepts include modeling networks as dynamical systems with numerical methods and new graph theoretical methods, but also focus on networks that change their topology as in morphogenesis and self-organization. The authors offer concepts to model network structures and dynamics, focussing on approaches applicable across disciplines.

Data Mining: Foundations and Intelligent Paradigms

Download Data Mining: Foundations and Intelligent Paradigms PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642231519
Total Pages : 367 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Data Mining: Foundations and Intelligent Paradigms by : Dawn E. Holmes

Download or read book Data Mining: Foundations and Intelligent Paradigms written by Dawn E. Holmes and published by Springer Science & Business Media. This book was released on 2012-01-12 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 3: Medical, Health, Social, Biological and other Applications” we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.

Statistical Pattern Recognition

Download Statistical Pattern Recognition PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470854782
Total Pages : 516 pages
Book Rating : 4.4/5 (78 download)

DOWNLOAD NOW!


Book Synopsis Statistical Pattern Recognition by : Andrew R. Webb

Download or read book Statistical Pattern Recognition written by Andrew R. Webb and published by John Wiley & Sons. This book was released on 2003-07-25 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a