Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Rough Pdes For Local Stochastic Volatility Models
Download Rough Pdes For Local Stochastic Volatility Models full books in PDF, epub, and Kindle. Read online Rough Pdes For Local Stochastic Volatility Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Rough PDEs for Local Stochastic Volatility Models by : Peter Bank
Download or read book Rough PDEs for Local Stochastic Volatility Models written by Peter Bank and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, we introduce a novel pricing methodology in general, possibly non-Markovian local stochastic volatility (LSV) models. We observe that by conditioning the LSV dynamics on the Brownian motion that drives the volatility, one obtains a time-inhomogeneous Markov process. Using tools from rough path theory, we describe how to precisely understand the conditional LSV dynamics and reveal their Markovian nature. The latter allows us to connect the conditional dynamics to so-called rough partial differential equations (RPDEs), through a Feynman-Kac type of formula. In terms of European pricing, conditional on realizations of one Brownian motion, we can compute conditional option prices by solving the corresponding linear RPDEs, and then average over all samples to find unconditional prices. Our approach depends only minimally on the specification of the volatility, making it applicable for a wide range of classical and rough LSV models, and it establishes a PDE pricing method for non-Markovian models. Finally, we present a first glimpse at numerical methods for RPDEs and apply them to price European options in several rough LSV models.
Book Synopsis A Course on Rough Paths by : Peter K. Friz
Download or read book A Course on Rough Paths written by Peter K. Friz and published by Springer Nature. This book was released on 2020-05-27 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than Itô-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH
Book Synopsis Computational Methods for Inverse Problems by : Curtis R. Vogel
Download or read book Computational Methods for Inverse Problems written by Curtis R. Vogel and published by SIAM. This book was released on 2002-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.
Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä
Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Book Synopsis Derivatives in Financial Markets with Stochastic Volatility by : Jean-Pierre Fouque
Download or read book Derivatives in Financial Markets with Stochastic Volatility written by Jean-Pierre Fouque and published by Cambridge University Press. This book was released on 2000-07-03 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2000, addresses pricing and hedging derivative securities in uncertain and changing market volatility.
Book Synopsis Finite Difference Methods in Financial Engineering by : Daniel J. Duffy
Download or read book Finite Difference Methods in Financial Engineering written by Daniel J. Duffy and published by John Wiley & Sons. This book was released on 2013-10-28 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
Book Synopsis Rough Volatility by : Christian Bayer
Download or read book Rough Volatility written by Christian Bayer and published by SIAM. This book was released on 2023-12-18 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volatility underpins financial markets by encapsulating uncertainty about prices, individual behaviors, and decisions and has traditionally been modeled as a semimartingale, with consequent scaling properties. The mathematical description of the volatility process has been an active topic of research for decades; however, driven by empirical estimates of the scaling behavior of volatility, a new paradigm has emerged, whereby paths of volatility are rougher than those of semimartingales. According to this perspective, volatility behaves essentially as a fractional Brownian motion with a small Hurst parameter. The first book to offer a comprehensive exploration of the subject, Rough Volatility contributes to the understanding and application of rough volatility models by equipping readers with the tools and insights needed to delve into the topic, exploring the motivation for rough volatility modeling, providing a toolbox for computation and practical implementation, and organizing the material to reflect the subject’s development and progression. This book is designed for researchers and graduate students in quantitative finance as well as quantitative analysts and finance professionals.
Book Synopsis Nonlinear Option Pricing by : Julien Guyon
Download or read book Nonlinear Option Pricing written by Julien Guyon and published by CRC Press. This book was released on 2013-12-19 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: New Tools to Solve Your Option Pricing ProblemsFor nonlinear PDEs encountered in quantitative finance, advanced probabilistic methods are needed to address dimensionality issues. Written by two leaders in quantitative research-including Risk magazine's 2013 Quant of the Year-Nonlinear Option Pricing compares various numerical methods for solving hi
Book Synopsis Splitting Methods in Communication, Imaging, Science, and Engineering by : Roland Glowinski
Download or read book Splitting Methods in Communication, Imaging, Science, and Engineering written by Roland Glowinski and published by Springer. This book was released on 2017-01-05 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.
Book Synopsis 2019-20 MATRIX Annals by : Jan de Gier
Download or read book 2019-20 MATRIX Annals written by Jan de Gier and published by Springer Nature. This book was released on 2021-02-10 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
Book Synopsis Monte Carlo and Quasi-Monte Carlo Methods 1996 by : Harald Niederreiter
Download or read book Monte Carlo and Quasi-Monte Carlo Methods 1996 written by Harald Niederreiter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are numerical methods based on random sampling and quasi-Monte Carlo methods are their deterministic versions. This volume contains the refereed proceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing which was held at the University of Salzburg (Austria) from July 9--12, 1996. The conference was a forum for recent progress in the theory and the applications of these methods. The topics covered in this volume range from theoretical issues in Monte Carlo and simulation methods, low-discrepancy point sets and sequences, lattice rules, and pseudorandom number generation to applications such as numerical integration, numerical linear algebra, integral equations, binary search, global optimization, computational physics, mathematical finance, and computer graphics. These proceedings will be of interest to graduate students and researchers in Monte Carlo and quasi-Monte Carlo methods, to numerical analysts, and to practitioners of simulation methods.
Book Synopsis Nonlinear Option Pricing by : Julien Guyon
Download or read book Nonlinear Option Pricing written by Julien Guyon and published by CRC Press. This book was released on 2013-12-19 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: New Tools to Solve Your Option Pricing Problems For nonlinear PDEs encountered in quantitative finance, advanced probabilistic methods are needed to address dimensionality issues. Written by two leaders in quantitative research—including Risk magazine’s 2013 Quant of the Year—Nonlinear Option Pricing compares various numerical methods for solving high-dimensional nonlinear problems arising in option pricing. Designed for practitioners, it is the first authored book to discuss nonlinear Black-Scholes PDEs and compare the efficiency of many different methods. Real-World Solutions for Quantitative Analysts The book helps quants develop both their analytical and numerical expertise. It focuses on general mathematical tools rather than specific financial questions so that readers can easily use the tools to solve their own nonlinear problems. The authors build intuition through numerous real-world examples of numerical implementation. Although the focus is on ideas and numerical examples, the authors introduce relevant mathematical notions and important results and proofs. The book also covers several original approaches, including regression methods and dual methods for pricing chooser options, Monte Carlo approaches for pricing in the uncertain volatility model and the uncertain lapse and mortality model, the Markovian projection method and the particle method for calibrating local stochastic volatility models to market prices of vanilla options with/without stochastic interest rates, the a + bλ technique for building local correlation models that calibrate to market prices of vanilla options on a basket, and a new stochastic representation of nonlinear PDE solutions based on marked branching diffusions.
Book Synopsis Iterative Regularization Methods for Nonlinear Ill-Posed Problems by : Barbara Kaltenbacher
Download or read book Iterative Regularization Methods for Nonlinear Ill-Posed Problems written by Barbara Kaltenbacher and published by Walter de Gruyter. This book was released on 2008-09-25 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.
Book Synopsis Partial Differential Equations in Action by : Sandro Salsa
Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-04-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.
Book Synopsis The Volatility Surface by : Jim Gatheral
Download or read book The Volatility Surface written by Jim Gatheral and published by . This book was released on 2006 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Essentials of Stochastic Processes by : Richard Durrett
Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Book Synopsis Quantitative Finance by : Maria Cristina Mariani
Download or read book Quantitative Finance written by Maria Cristina Mariani and published by John Wiley & Sons. This book was released on 2019-11-06 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a multitude of topics relevant to the quantitative finance community by combining the best of the theory with the usefulness of applications Written by accomplished teachers and researchers in the field, this book presents quantitative finance theory through applications to specific practical problems and comes with accompanying coding techniques in R and MATLAB, and some generic pseudo-algorithms to modern finance. It also offers over 300 examples and exercises that are appropriate for the beginning student as well as the practitioner in the field. The Quantitative Finance book is divided into four parts. Part One begins by providing readers with the theoretical backdrop needed from probability and stochastic processes. We also present some useful finance concepts used throughout the book. In part two of the book we present the classical Black-Scholes-Merton model in a uniquely accessible and understandable way. Implied volatility as well as local volatility surfaces are also discussed. Next, solutions to Partial Differential Equations (PDE), wavelets and Fourier transforms are presented. Several methodologies for pricing options namely, tree methods, finite difference method and Monte Carlo simulation methods are also discussed. We conclude this part with a discussion on stochastic differential equations (SDE’s). In the third part of this book, several new and advanced models from current literature such as general Lvy processes, nonlinear PDE's for stochastic volatility models in a transaction fee market, PDE's in a jump-diffusion with stochastic volatility models and factor and copulas models are discussed. In part four of the book, we conclude with a solid presentation of the typical topics in fixed income securities and derivatives. We discuss models for pricing bonds market, marketable securities, credit default swaps (CDS) and securitizations. Classroom-tested over a three-year period with the input of students and experienced practitioners Emphasizes the volatility of financial analyses and interpretations Weaves theory with application throughout the book Utilizes R and MATLAB software programs Presents pseudo-algorithms for readers who do not have access to any particular programming system Supplemented with extensive author-maintained web site that includes helpful teaching hints, data sets, software programs, and additional content Quantitative Finance is an ideal textbook for upper-undergraduate and beginning graduate students in statistics, financial engineering, quantitative finance, and mathematical finance programs. It will also appeal to practitioners in the same fields.