Role of Fluid Elasticity and Viscous Instabilities in Proppant Transport in Hydraulic Fractures

Download Role of Fluid Elasticity and Viscous Instabilities in Proppant Transport in Hydraulic Fractures PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Role of Fluid Elasticity and Viscous Instabilities in Proppant Transport in Hydraulic Fractures by : Sahil Malhotra

Download or read book Role of Fluid Elasticity and Viscous Instabilities in Proppant Transport in Hydraulic Fractures written by Sahil Malhotra and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents an experimental investigation of fluid flow, proppant settling and horizontal proppant transport in hydraulic fractures. The work is divided into two major sections: investigation of proppant settling in polymer-free surfactant-based viscoelastic (VES) fluids and development of a new method of proppant injection, referred to as Alternate-Slug fracturing. VES fluid systems have been used to eliminate polymer-based damage and to efficiently transport proppant into the fracture. Current models and correlations neglect the important influence of fracture walls and fluid elasticity on proppant settling. Experimental data is presented to show that elastic effects can increase or decrease the settling velocity of particles, even in the creeping flow regime. Experimental data shows that significant drag reduction occurs at low Weissenberg number, followed by a transition to drag enhancement at higher Weissenberg numbers. A new correlation is presented for the sphere settling velocity in unbounded viscoelastic fluids as a function of the fluid rheology and the proppant properties. The wall factors for sphere settling velocities in viscoelastic fluids confined between solid parallel plates (fracture walls) are calculated from experimental measurements made on these fluids over a range of Weissenberg numbers. Results indicate that elasticity reduces the retardation effect of the confining walls and this reduction is more pronounced at higher ratios of the particle diameter to spacing between the walls. Shear thinning behavior of fluids is also observed to reduce the retardation effect of the confining walls. A new empirical correlation for wall factors for spheres settling in a viscoelastic fluid confined between two parallel walls is presented. An experimental study on proppant placement using a new method of fracturing referred to as Alternate-Slug fracturing is presented. This method involves alternate injection of low viscosity and high viscosity fluids into the fracture, with proppant pumped in the low viscosity fluid. Experiments are conducted in Hele-Shaw cells to study the growth of viscous fingers over a wide range of viscosity ratios. Data is presented to show that the viscous finger velocities and mixing zone velocities increase with viscosity ratio up to viscosity ratios of about 350 and the trend is consistent with Koval's theory. However, at higher viscosity ratios the mixing zone velocity values plateau signifying no further effect of viscosity contrast on the growth of fingers and mixing zone. The plateau in the velocities at high viscosity ratios is caused by an increase in the thickness of the displacing fluid and a reduction in the thin film of the displaced fluid on the walls of the Hele-Shaw cell. Fluid elasticity is observed to retard the growth of fingers and leads to growth of multiple thin fingers as compared to a single thick dominant finger in less elastic fluids. Observations show the shielding effect is reduced by fluid elasticity. Elastic effects are observed to reduce the thickness of thin film of displaced fluid on the walls of Hele-Shaw cell. The dominant wave number for the growth of instabilities is observed to be higher in more elastic fluids. At the onset of instability, the interface breaks down into a greater number of fingers in more elastic fluids. Experiments are performed in simulated fractures (slot cells) to show the proppant distribution using alternate-slug fracturing. Observations show alternate-slug fracturing ensures deeper placement of proppant through two primary mechanisms: (a) proppant transport in viscous fingers formed by the low viscosity fluid and (b) an increase in drag force in the polymer slug leading to better entrainment and displacement of any proppant banks that may have formed. The method offers advantages of lower polymer costs, lower pumping horsepower, smaller fracture widths, better control of fluid leak-off and less gel damage compared to conventional gel fracs.

Investigating the Performance of High Viscosity Friction Reducers Used for Proppant Transport During Hydraulic Fracturing

Download Investigating the Performance of High Viscosity Friction Reducers Used for Proppant Transport During Hydraulic Fracturing PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 174 pages
Book Rating : 4.:/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Investigating the Performance of High Viscosity Friction Reducers Used for Proppant Transport During Hydraulic Fracturing by : Mohammed Salem Ba Geri

Download or read book Investigating the Performance of High Viscosity Friction Reducers Used for Proppant Transport During Hydraulic Fracturing written by Mohammed Salem Ba Geri and published by . This book was released on 2019 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Over the last few recent years, high viscosity friction reducers (HVFRs) have been successfully used in the oil and gas industry across all premier shale plays in North America including Permian, Bakken, and Eagle Ford. However, selecting the most suitable fracture fluid system plays an essential role in proppant transport and minimizing or eliminating formation damage. This study investigates the influence of the use of produced water on the rheological behavior of HVFRs compared to a traditional linear guar gel. Experimental rheological characterization was studied to investigate the viscoelastic property of HVFRs on proppant transport. In addition, the successful implication of utilizing HVFRs in the Wolfcamp formation, in the Permian Basin was discussed. This study also provides a full comparative study of viscosity and elastic modulus between HVFRs and among fracturing fluids such as xanthan, polyacrylamide-based emulsion polymer, and guar. The research findings were analyzed to reach conclusions on how HVFRs can be an alternative fracture fluid system within many unconventional reservoirs. Compared to the traditional hydraulic fracture fluid system, the research shows the many potential advantages that HVFR fluids offer, including superior proppant transport capability, almost 100% retained conductivity, around 30% cost reduction, and logistics such as minimizing chemical usage by 50% and the ability to stoner operation equipment on location. Finally, this comprehensive investigation addresses up-to-date of using HVFRs challenges and emphasizes necessities for using HVFRs in high TDS fluids"--Abstract, page iv.

A Model for Hydraulic Fracturing and Proppant Placement in Unconsolidated Sands

Download A Model for Hydraulic Fracturing and Proppant Placement in Unconsolidated Sands PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 390 pages
Book Rating : 4.:/5 (13 download)

DOWNLOAD NOW!


Book Synopsis A Model for Hydraulic Fracturing and Proppant Placement in Unconsolidated Sands by : Dongkeun Lee

Download or read book A Model for Hydraulic Fracturing and Proppant Placement in Unconsolidated Sands written by Dongkeun Lee and published by . This book was released on 2017 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing in unconsolidated or poorly consolidated formations has been used as a technique for well stimulation and for sand control. Although a large number of hydraulic fracturing operations have been performed in soft formations, the exact mechanisms of failure and fracture propagation remain an unresolved issue. Conventional hydraulic fracturing models based on the theory of linear elastic fracture mechanics (LEFM) consistently predict lower net fracturing pressure, smaller fracture widths and longer fracture lengths in soft formations than observed in the field. Operators who want to design and analyze frac-pack treatments routinely use a hard rock model and need to calibrate and often manipulate input parameters beyond a physically reasonable range to match the net fracturing pressure and well performance data. In this dissertation, we have developed a fully-coupled, three-dimensional hydraulic fracture model for poro-elasto-plastic materials and fluid flow coupled with proppant transport. A computational framework for fluid-structure interaction (FSI) based on finite volume method was developed for modeling of hydraulic fracturing and proppant placement in soft formations. Two separate domains, a fracture and a reservoir domain, are discretized individually, separate equations are solved in the two domains, and their interactions are modeled. The model includes the fully coupled process of power-law fluid flow inside the fracture with proppant transport, fluid leak-off from the fracture into the porous reservoir, pore pressure diffusion into the reservoir, inelastic deformation of the poro-elasto-plastic reservoir, and fracture propagation using a cohesive zone model along with a dynamic meshing procedure. Fully-coupled processes between the two domains, and pressure, flow and displacement coupling within each domain are modeled by an iterative and segregated solution procedure, where each component of the field variable is solved separately, consecutively, and iteratively. We verified the essential components of the model by comparing our simulation results with several well-known analytical solutions (elastoplastic deformation and failure problem, KGD model in a 2-D elastic domain, and KGD model in storage-toughness dominated regime). We applied the model to design and analyze frac-pack operations conducted in a Gulf of Mexico oilfield. Our model is capable of capturing the high net fracturing pressure commonly observed during frac-packing operations without adjusting any input parameters. The model shows quantitatively that plasticity causes lower stress concentration around the fracture tip which shields the tip of the propagating fracture from the fracturing pressure, and retards fracture growth. Our model predicts shorter fracture lengths and wider widths compared to a hard rock model. Shear failure around the fracture and ahead of the tip are modeled. Low cohesion sands tend to fail in shear first then in tension if sufficient pore pressure builds up. We investigated the effect of fluid viscosity, injection rate, and proppant diameter on fracture growth and proppant placement using sensitivity studies. Higher apparent fluid viscosity and injection rate results in wider fractures with better proppant placement, when the fracture is expected to be contained within the payzone. Utilizing larger diameter of proppant leads to settling-dominant proppant placement resulting in the formation of a proppant bank at the bottom of the induced fracture. The new frac-pack model for the first time allows operators to design and analyze hydraulic fracturing stimulations in soft, elastoplastic formations when complex fracturing fluids are used. Our results also provide guidelines for the selection of fracturing fluid rheology, proppant size, and injection rates.

Investigation of Proppant Static Settling Velocity in Hydraulic Fractures Using Viscoelastic Linear Gel

Download Investigation of Proppant Static Settling Velocity in Hydraulic Fractures Using Viscoelastic Linear Gel PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 116 pages
Book Rating : 4.:/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Investigation of Proppant Static Settling Velocity in Hydraulic Fractures Using Viscoelastic Linear Gel by : Vismay Shah

Download or read book Investigation of Proppant Static Settling Velocity in Hydraulic Fractures Using Viscoelastic Linear Gel written by Vismay Shah and published by . This book was released on 2018 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Few studies have quantified proppant transport in static conditions using actual proppant and validated previously established correlation. The objective of this study is to investigate the rheological properties of the linear gel, and determine the effect of size, shape and specific gravity of the proppant, fracture walls and rheological properties of the fluid on the proppant settling velocity in static condition and validate the previously established correlation. Shear viscosity and dynamic frequency sweep tests were performed to investigate the viscous and viscoelastic behaviour of the HPG linear gel with five different concentrations. Proppant settling experiments were conducted with different proppant types and sizes with two different setups, one with a large diameter transparent cylinder and another with a parallel plexiglass plate model which imposes wall effects. Parameters used during the experiments were inserted into previously established correlation and the calculated settling values were compared with the experimental ones to identify the best suitable correlation. HPG linear gel behaved as non-Newtonian shear thinning fluid and showed very little elasticity for the angular frequency from 1 to 100 rad/sec. With increasing shear thinning behaviour of the linear gel it was found that the effect of proppant size, specific gravity and fracture walls got more pronounced. With increasing diameter and specific gravity of the proppant, the effect of viscosity of the unbounded fluid on the settling velocity decreased; however, it remained constant in the case of confined fracturing fluid. The correlation provided by Swanson (1967) and Liu and Sharma (2005) were identified as best suitable correlations based on this study for unbounded fracturing fluid and confined fracturing fluid respectively"--Abstract, page iii.

Proceedings of the International Field Exploration and Development Conference 2022

Download Proceedings of the International Field Exploration and Development Conference 2022 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819919649
Total Pages : 7600 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the International Field Exploration and Development Conference 2022 by : Jia'en Lin

Download or read book Proceedings of the International Field Exploration and Development Conference 2022 written by Jia'en Lin and published by Springer Nature. This book was released on 2023-08-05 with total page 7600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reservoir surveillance and management, reservoir evaluation and dynamic description, reservoir production stimulation and EOR, ultra-tight reservoir, unconventional oil and gas resources technology, oil and gas well production testing, and geomechanics. This book is a compilation of selected papers from the 12th International Field Exploration and Development Conference (IFEDC 2022). The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers, senior engineers as well as professional students.

Proppant Transport in Complex Fracture Networks

Download Proppant Transport in Complex Fracture Networks PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 320 pages
Book Rating : 4.:/5 (973 download)

DOWNLOAD NOW!


Book Synopsis Proppant Transport in Complex Fracture Networks by : Christopher Allen Johnson Blyton

Download or read book Proppant Transport in Complex Fracture Networks written by Christopher Allen Johnson Blyton and published by . This book was released on 2016 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current hydraulic fracturing practice in unconventional resource development typically involves multiple fracturing stages, each consisting of the simultaneous creation of several fractures from a horizontal well. A large mass of proppant, often millions of pounds per well, is injected with the fluid to provide post-closure conductivity. Despite the large quantity of proppant used and its critical importance to well productivity, simple models are often applied to determine its placement in fractures. Propped or effective fracture lengths indicated by modeling may be 100 to 300% larger than the lengths inferred from production data. A common assumption is that the average proppant velocity due to pressure driven flow is equal to the average carrier fluid velocity, while the settling velocity calculation uses Stokes’ law. To more accurately determine the placement of proppant in a fracture, it is necessary to rigorously account for many effects not included in the above assumptions. In this study, the motion of particles flowing with a fluid between fracture walls has been simulated using a coupled computational fluid dynamics and discrete element method (CFD-DEM) that rigorously accounts for the both aspects of the problem. These simulations determine individual particle trajectories as particle to particle and particle to wall collisions occur and include the effect of fluid flow. The results show that the proppant concentration and the ratio of proppant diameter to fracture width govern the relative velocity of proppant and fluid. Proppant settling velocity has been examined for small fracture widths to delineate the effect of several independent variables, including concentration. Simulations demonstrate that larger concentration increases the average settling velocity, in apparent contrast with much of the available literature, which indicates that increased concentration reduces settling velocity. However, this is due to the absence of displacement driven counter current fluid flow. This demonstrates that proppant settling in a hydraulic fracture is more complex than usually considered. A proppant transport model developed from the results of the direct numerical simulations and existing correlations for particle settling velocity has been incorporated into a fully three-dimensional hydraulic fracturing simulator. This simulator couples fracture geomechanics with fluid flow and proppant transport considerations to enable the fracture geometry and proppant distribution to be determined rigorously. Two engineering fracture design parameters, injection rate and proppant diameter, have been varied to show the effect on proppant placement. This allows for an understanding of the relative importance of each and optimization of the treatment to a particular application. The presence of natural fractures in unconventional reservoirs can significantly contribute to well productivity. As proppant is transported along a hydraulic fracture, the presence of a dilated natural fracture forms a fluid accepting branch and may result in proppant entry. The proportion of proppant transported into a branch at steady state has been determined using the CFD-DEM approach and is presented via a dimensionless ‘particle transport coefficient’ through normalization by the proportion of fluid flowing into the branch. Reynolds number at the inlet, branch aperture and the angle of orientation between the main slot and branch, particle size and concentration each affect the transport coefficient. A very different physical process, which controls particle transport into a branch under certain conditions, is the formation of a stable particle bridge preventing subsequent particle transport into the branch. This phenomenon was observed in several simulation cases. The complete set of equations for a three-dimensional formulation of rectangular displacement discontinuity elements has been used to determine the width distribution of a hydraulic fracture and dilated natural fracture. The widths have been determined for several combinations of stress anisotropy, net pressure, hydraulic fracture height and length. The effect of the length, height and orientation of the natural fracture and the elastic moduli of the rock have also been examined. Of the cases examined, many show that natural fracture dilation does not occur. Further, of those cases where dilation is apparent, the proppant transport efficiency corresponding to the natural fracture width is significantly less than one and in many cases zero due to size exclusion. The location and orientation of the natural fracture do not significantly affect its width, while its length and the elastic moduli of the rock substantially change the width.

Hydraulic Proppant Fracturing and Gravel Packing

Download Hydraulic Proppant Fracturing and Gravel Packing PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080868843
Total Pages : 1277 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Proppant Fracturing and Gravel Packing by : D. Mader

Download or read book Hydraulic Proppant Fracturing and Gravel Packing written by D. Mader and published by Elsevier. This book was released on 1989-03-01 with total page 1277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many aspects of hydraulic proppant fracturing have changed since its innovation in 1947. The main significance of this book is its combination of technical and economical aspects to provide an integrated overview of the various applications of proppants in hydraulic fracturing, and gravel in sand control. The monitoring of fractures and gravel packs by well-logging and seismic techniques is also included.The book's extensive coverage of the subject should be of special interest to reservoir geologists and engineers, production engineers and technologists, and well log analysts.

Rock Fractures and Fluid Flow

Download Rock Fractures and Fluid Flow PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309049962
Total Pages : 568 pages
Book Rating : 4.3/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Rock Fractures and Fluid Flow by : National Research Council

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-08-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Hydraulic Fracture Mechanics

Download Hydraulic Fracture Mechanics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 328 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Fracture Mechanics by : Peter Valkó

Download or read book Hydraulic Fracture Mechanics written by Peter Valkó and published by . This book was released on 1995 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book explores the theoretical background of one of the most widespread activities in hydrocarbon wells, that of hydraulic fracturing. A comprehensive treatment of the basic phenomena includes: linear elasticity, stresses, fracture geometry and rheology. The diverse concepts of mechanics are integrated into a coherent description of hydraulic fracture propagation. The chapters in the book are cross-referenced throughout and the connections between the various phenomena are emphasized. The book offers readers a unique approach to the subject with the use of many numerical examples.

Unconventional Reservoir Geomechanics

Download Unconventional Reservoir Geomechanics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107087074
Total Pages : 495 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Unconventional Reservoir Geomechanics by : Mark D. Zoback

Download or read book Unconventional Reservoir Geomechanics written by Mark D. Zoback and published by Cambridge University Press. This book was released on 2019-05-16 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.

Mechanics of Hydraulic Fracturing

Download Mechanics of Hydraulic Fracturing PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0124200117
Total Pages : 245 pages
Book Rating : 4.1/5 (242 download)

DOWNLOAD NOW!


Book Synopsis Mechanics of Hydraulic Fracturing by : Ching H. Yew

Download or read book Mechanics of Hydraulic Fracturing written by Ching H. Yew and published by Gulf Professional Publishing. This book was released on 2014-09-25 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised to include current components considered for today's unconventional and multi-fracture grids, Mechanics of Hydraulic Fracturing, Second Edition explains one of the most important features for fracture design — the ability to predict the geometry and characteristics of the hydraulically induced fracture. With two-thirds of the world's oil and natural gas reserves committed to unconventional resources, hydraulic fracturing is the best proven well stimulation method to extract these resources from their more remote and complex reservoirs. However, few hydraulic fracture models can properly simulate more complex fractures. Engineers and well designers must understand the underlying mechanics of how fractures are modeled in order to correctly predict and forecast a more advanced fracture network. Updated to accommodate today's fracturing jobs, Mechanics of Hydraulic Fracturing, Second Edition enables the engineer to: - Understand complex fracture networks to maximize completion strategies - Recognize and compute stress shadow, which can drastically affect fracture network patterns - Optimize completions by properly modeling and more accurately predicting for today's hydraulic fracturing completions - Discusses the underlying mechanics of creating a fracture from the wellbore - Enhanced to include newer modeling components such as stress shadow and interaction of hydraulic fracture with a natural fracture, which aids in more complex fracture networks - Updated experimental studies that apply to today's unconventional fracturing cases

Alternate-slug Fracturing Using Foam

Download Alternate-slug Fracturing Using Foam PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 56 pages
Book Rating : 4.:/5 (988 download)

DOWNLOAD NOW!


Book Synopsis Alternate-slug Fracturing Using Foam by : Kaustubh Shrivastava

Download or read book Alternate-slug Fracturing Using Foam written by Kaustubh Shrivastava and published by . This book was released on 2016 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: The success of a hydraulic fracturing job depends primarily on the proper distribution of proppant inside the fracture. Fracture length and conductivity are the two prime characteristics that determine the productivity of fractured wells (Liu & Sharma, 2005). Slick-water fracturing involves the use of large volumes of water for fracturing shales and mudstones (Palisch, et al., 2010). The low viscosity of water increases the settling velocity of proppant, resulting in an ineffective lateral placement of the proppant. It also affects the vertical coverage of the proppant across the pay zone(s), rendering the fracturing process inefficient (Gadde, et al., 2004). To improve proppant placement, a new technique was proposed by Malhotra et al. (2014), that involves pumping slugs of high viscosity and low viscosity fluids alternately, with most of the proppant being carried by the low viscosity fluid. Alternate injection of high viscosity and low viscosity slugs creates a mobility contrast between the fluids and leads to the formation of viscous fingers. The viscous fingers provide a pathway for proppant transport. The higher velocity of the viscous fingers compared to the injection velocity of the fluid leads to deeper placement of proppant. In addition, viscous sweeps, due to the high viscosity slugs, push any proppant bank formed near the wellbore deeper into the fracture, thus creating longer fractures (Malhotra, et al., 2014). In this study, we conducted an experimental investigation to obtain a fundamental understanding of the viscous fingering phenomena when water and foam are used as the low and high viscosity fluids, over a wide range of viscosity ratios. We have derived a relationship between finger-tip velocity and viscosity ratio of the fluids. This relationship will help in designing Alternate-slug fracturing treatments for the foam-water system.

Mechanics of Hydraulic Fracturing

Download Mechanics of Hydraulic Fracturing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119742455
Total Pages : 291 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Mechanics of Hydraulic Fracturing by : Xi Zhang

Download or read book Mechanics of Hydraulic Fracturing written by Xi Zhang and published by John Wiley & Sons. This book was released on 2022-12-15 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.

Fluid Flow in Fractured Porous Media

Download Fluid Flow in Fractured Porous Media PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039214233
Total Pages : 578 pages
Book Rating : 4.0/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Fluid Flow in Fractured Porous Media by : Richeng Liu

Download or read book Fluid Flow in Fractured Porous Media written by Richeng Liu and published by MDPI. This book was released on 2019-09-30 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Hydraulic Fracturing in Unconventional Reservoirs

Download Hydraulic Fracturing in Unconventional Reservoirs PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128176660
Total Pages : 636 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Fracturing in Unconventional Reservoirs by : Hoss Belyadi

Download or read book Hydraulic Fracturing in Unconventional Reservoirs written by Hoss Belyadi and published by Gulf Professional Publishing. This book was released on 2019-06-18 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today's newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. - Helps readers understand drilling and production technology and operations in shale gas through real-field examples - Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference - Presents the latest operations and applications in all facets of fracturing

Proppant Transport Down a Three-dimensional Planar Fracture

Download Proppant Transport Down a Three-dimensional Planar Fracture PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 402 pages
Book Rating : 4.:/5 (216 download)

DOWNLOAD NOW!


Book Synopsis Proppant Transport Down a Three-dimensional Planar Fracture by : Zillur Rahim

Download or read book Proppant Transport Down a Three-dimensional Planar Fracture written by Zillur Rahim and published by . This book was released on 1988 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt:

The Effect of Fluid Viscosity and Density on Proppant Transport in Complex Slot Systems

Download The Effect of Fluid Viscosity and Density on Proppant Transport in Complex Slot Systems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 161 pages
Book Rating : 4.:/5 (119 download)

DOWNLOAD NOW!


Book Synopsis The Effect of Fluid Viscosity and Density on Proppant Transport in Complex Slot Systems by : Ashtiwi Bahri

Download or read book The Effect of Fluid Viscosity and Density on Proppant Transport in Complex Slot Systems written by Ashtiwi Bahri and published by . This book was released on 2020 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: