Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Robustness Of Bayesian Factor Analysis Estimates
Download Robustness Of Bayesian Factor Analysis Estimates full books in PDF, epub, and Kindle. Read online Robustness Of Bayesian Factor Analysis Estimates ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Robustness of Bayesian Factor Analysis Estimates by : Sang Eun Lee
Download or read book Robustness of Bayesian Factor Analysis Estimates written by Sang Eun Lee and published by . This book was released on 1994 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Robust Bayesian Analysis by : David Rios Insua
Download or read book Robust Bayesian Analysis written by David Rios Insua and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con cerns foundational aspects and describes decision-theoretical axiomatisa tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.
Book Synopsis Subjective and Objective Bayesian Statistics by : S. James Press
Download or read book Subjective and Objective Bayesian Statistics written by S. James Press and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ein Wiley-Klassiker über Bayes-Statistik, jetzt in durchgesehener und erweiterter Neuauflage! - Werk spiegelt die stürmische Entwicklung dieses Gebietes innerhalb der letzten Jahre wider - vollständige Darstellung der theoretischen Grundlagen - jetzt ergänzt durch unzählige Anwendungsbeispiele - die wichtigsten modernen Methoden (u. a. hierarchische Modellierung, linear-dynamische Modellierung, Metaanalyse, MCMC-Simulationen) - einzigartige Diskussion der Finetti-Transformierten und anderer Themen, über die man ansonsten nur spärliche Informationen findet - Lösungen zu den Übungsaufgaben sind enthalten
Book Synopsis Bayesian Robustness by : James O. Berger
Download or read book Bayesian Robustness written by James O. Berger and published by IMS. This book was released on 1996 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Bayesian Inference in the Social Sciences by : Ivan Jeliazkov
Download or read book Bayesian Inference in the Social Sciences written by Ivan Jeliazkov and published by John Wiley & Sons. This book was released on 2014-11-04 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents new models, methods, and techniques and considers important real-world applications in political science, sociology, economics, marketing, and finance Emphasizing interdisciplinary coverage, Bayesian Inference in the Social Sciences builds upon the recent growth in Bayesian methodology and examines an array of topics in model formulation, estimation, and applications. The book presents recent and trending developments in a diverse, yet closely integrated, set of research topics within the social sciences and facilitates the transmission of new ideas and methodology across disciplines while maintaining manageability, coherence, and a clear focus. Bayesian Inference in the Social Sciences features innovative methodology and novel applications in addition to new theoretical developments and modeling approaches, including the formulation and analysis of models with partial observability, sample selection, and incomplete data. Additional areas of inquiry include a Bayesian derivation of empirical likelihood and method of moment estimators, and the analysis of treatment effect models with endogeneity. The book emphasizes practical implementation, reviews and extends estimation algorithms, and examines innovative applications in a multitude of fields. Time series techniques and algorithms are discussed for stochastic volatility, dynamic factor, and time-varying parameter models. Additional features include: Real-world applications and case studies that highlight asset pricing under fat-tailed distributions, price indifference modeling and market segmentation, analysis of dynamic networks, ethnic minorities and civil war, school choice effects, and business cycles and macroeconomic performance State-of-the-art computational tools and Markov chain Monte Carlo algorithms with related materials available via the book’s supplemental website Interdisciplinary coverage from well-known international scholars and practitioners Bayesian Inference in the Social Sciences is an ideal reference for researchers in economics, political science, sociology, and business as well as an excellent resource for academic, government, and regulation agencies. The book is also useful for graduate-level courses in applied econometrics, statistics, mathematical modeling and simulation, numerical methods, computational analysis, and the social sciences.
Book Synopsis Bayesian Psychometric Modeling by : Roy Levy
Download or read book Bayesian Psychometric Modeling written by Roy Levy and published by CRC Press. This book was released on 2017-07-28 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Single Cohesive Framework of Tools and Procedures for Psychometrics and Assessment Bayesian Psychometric Modeling presents a unified Bayesian approach across traditionally separate families of psychometric models. It shows that Bayesian techniques, as alternatives to conventional approaches, offer distinct and profound advantages in achieving many goals of psychometrics. Adopting a Bayesian approach can aid in unifying seemingly disparate—and sometimes conflicting—ideas and activities in psychometrics. This book explains both how to perform psychometrics using Bayesian methods and why many of the activities in psychometrics align with Bayesian thinking. The first part of the book introduces foundational principles and statistical models, including conceptual issues, normal distribution models, Markov chain Monte Carlo estimation, and regression. Focusing more directly on psychometrics, the second part covers popular psychometric models, including classical test theory, factor analysis, item response theory, latent class analysis, and Bayesian networks. Throughout the book, procedures are illustrated using examples primarily from educational assessments. A supplementary website provides the datasets, WinBUGS code, R code, and Netica files used in the examples.
Book Synopsis Advances in Mathematical and Statistical Modeling by : Barry C. Arnold
Download or read book Advances in Mathematical and Statistical Modeling written by Barry C. Arnold and published by Springer Science & Business Media. This book was released on 2009-04-09 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enrique Castillo is a leading figure in several mathematical and engineering fields. Organized to honor Castillo’s significant contributions, this volume is an outgrowth of the "International Conference on Mathematical and Statistical Modeling," and covers recent advances in the field. Applications to safety, reliability and life-testing, financial modeling, quality control, general inference, as well as neural networks and computational techniques are presented.
Book Synopsis Multivariate Bayesian Statistics by : Daniel B. Rowe
Download or read book Multivariate Bayesian Statistics written by Daniel B. Rowe and published by CRC Press. This book was released on 2002-11-25 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Of the two primary approaches to the classic source separation problem, only one does not impose potentially unreasonable model and likelihood constraints: the Bayesian statistical approach. Bayesian methods incorporate the available information regarding the model parameters and not only allow estimation of the sources and mixing coefficients, but
Book Synopsis Correlated Bayesian Factor Analysis by : Daniel Bryant Rowe
Download or read book Correlated Bayesian Factor Analysis written by Daniel Bryant Rowe and published by . This book was released on 1998 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Statistical Methods for Modeling Human Dynamics by : Sy-Miin Chow
Download or read book Statistical Methods for Modeling Human Dynamics written by Sy-Miin Chow and published by Taylor & Francis. This book was released on 2011-02-25 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary volume features contributions from researchers in the fields of psychology, neuroscience, statistics, computer science, and physics. State-of-the-art techniques and applications used to analyze data obtained from studies in cognition, emotion, and electrophysiology are reviewed along with techniques for modeling in real time and for examining lifespan cognitive changes, for conceptualizing change using item response, nonparametric and hierarchical models, and control theory-inspired techniques for deriving diagnoses in medical and psychotherapeutic settings. The syntax for running the analyses presented in the book is provided on the Psychology Press site. Most of the programs are written in R while others are for Matlab, SAS, Win-BUGS, and DyFA. Readers will appreciate a review of the latest methodological techniques developed in the last few years. Highlights include an examination of: Statistical and mathematical modeling techniques for the analysis of brain imaging such as EEGs, fMRIs, and other neuroscience data Dynamic modeling techniques for intensive repeated measurement data Panel modeling techniques for fewer time points data State-space modeling techniques for psychological data Techniques used to analyze reaction time data. Each chapter features an introductory overview of the techniques needed to understand the chapter, a summary, and numerous examples. Each self-contained chapter can be read on its own and in any order. Divided into three major sections, the book examines techniques for examining within-person derivations in change patterns, intra-individual change, and inter-individual differences in change and interpersonal dynamics. Intended for advanced students and researchers, this book will appeal to those interested in applying state-of-the-art dynamic modeling techniques to the the study of neurological, developmental, cognitive, and social/personality psychology, as well as neuroscience, computer science, and engineering.
Book Synopsis An Introduction to Bayesian Analysis by : Jayanta K. Ghosh
Download or read book An Introduction to Bayesian Analysis written by Jayanta K. Ghosh and published by Springer Science & Business Media. This book was released on 2007-07-03 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior.
Book Synopsis Bayesian Structural Equation Modeling by : Sarah Depaoli
Download or read book Bayesian Structural Equation Modeling written by Sarah Depaoli and published by Guilford Publications. This book was released on 2021-08-16 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and sample code in both Mplus and R. The companion website (www.guilford.com/depaoli-materials) supplies data sets; annotated code for implementation in both Mplus and R, so that users can work within their preferred platform; and output for all of the book’s examples.
Book Synopsis Large Dimensional Factor Analysis by : Jushan Bai
Download or read book Large Dimensional Factor Analysis written by Jushan Bai and published by Now Publishers Inc. This book was released on 2008 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Dimensional Factor Analysis provides a survey of the main theoretical results for large dimensional factor models, emphasizing results that have implications for empirical work. The authors focus on the development of the static factor models and on the use of estimated factors in subsequent estimation and inference. Large Dimensional Factor Analysis discusses how to determine the number of factors, how to conduct inference when estimated factors are used in regressions, how to assess the adequacy pf observed variables as proxies for latent factors, how to exploit the estimated factors to test unit root tests and common trends, and how to estimate panel cointegration models.
Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman
Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Book Synopsis Artificial Intelligence in Recognition and Classification of Astrophysical and Medical Images by : Valentina Zharkova
Download or read book Artificial Intelligence in Recognition and Classification of Astrophysical and Medical Images written by Valentina Zharkova and published by Springer Science & Business Media. This book was released on 2007-03-07 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents innovative techniques in recognition and classification of astrophysical and medical images. Coverage includes: image standardization and enhancement; region-based methods for pattern recognition in medical and astrophysical images; advanced information processing using statistical methods; and feature recognition and classification using spectral method.
Book Synopsis Robustness Tests for Quantitative Research by : Eric Neumayer
Download or read book Robustness Tests for Quantitative Research written by Eric Neumayer and published by Cambridge University Press. This book was released on 2017-08-17 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly accessible book presents robustness testing as the methodology for conducting quantitative analyses in the presence of model uncertainty.
Book Synopsis Statistical Decision Theory and Bayesian Analysis by : James O. Berger
Download or read book Statistical Decision Theory and Bayesian Analysis written by James O. Berger and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.