Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Robust Change Point Detection And Dependence Modeling
Download Robust Change Point Detection And Dependence Modeling full books in PDF, epub, and Kindle. Read online Robust Change Point Detection And Dependence Modeling ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Robustness and Complex Data Structures by : Claudia Becker
Download or read book Robustness and Complex Data Structures written by Claudia Becker and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Festschrift in honour of Ursula Gather’s 60th birthday deals with modern topics in the field of robust statistical methods, especially for time series and regression analysis, and with statistical methods for complex data structures. The individual contributions of leading experts provide a textbook-style overview of the topic, supplemented by current research results and questions. The statistical theory and methods in this volume aim at the analysis of data which deviate from classical stringent model assumptions, which contain outlying values and/or have a complex structure. Written for researchers as well as master and PhD students with a good knowledge of statistics.
Download or read book Dependence Modeling written by Harry Joe and published by World Scientific. This book was released on 2011 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Introduction : Dependence modeling / D. Kurowicka -- 2. Multivariate copulae / M. Fischer -- 3. Vines arise / R.M. Cooke, H. Joe and K. Aas -- 4. Sampling count variables with specified Pearson correlation : A comparison between a naive and a C-vine sampling approach / V. Erhardt and C. Czado -- 5. Micro correlations and tail dependence / R.M. Cooke, C. Kousky and H. Joe -- 6. The Copula information criterion and Its implications for the maximum pseudo-likelihood estimator / S. Gronneberg -- 7. Dependence comparisons of vine copulae with four or more variables / H. Joe -- 8. Tail dependence in vine copulae / H. Joe -- 9. Counting vines / O. Morales-Napoles -- 10. Regular vines : Generation algorithm and number of equivalence classes / H. Joe, R.M. Cooke and D. Kurowicka -- 11. Optimal truncation of vines / D. Kurowicka -- 12. Bayesian inference for D-vines : Estimation and model selection / C. Czado and A. Min -- 13. Analysis of Australian electricity loads using joint Bayesian inference of D-vines with autoregressive margins / C. Czado, F. Gartner and A. Min -- 14. Non-parametric Bayesian belief nets versus vines / A. Hanea -- 15. Modeling dependence between financial returns using pair-copula constructions / K. Aas and D. Berg -- 16. Dynamic D-vine model / A. Heinen and A. Valdesogo -- 17. Summary and future directions / D. Kurowicka
Book Synopsis Change-Point Analysis in Nonstationary Stochastic Models by : Boris Brodsky
Download or read book Change-Point Analysis in Nonstationary Stochastic Models written by Boris Brodsky and published by CRC Press. This book was released on 2016-12-12 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the development of methods for detection and estimation of changes in complex systems. These systems are generally described by nonstationary stochastic models, which comprise both static and dynamic regimes, linear and nonlinear dynamics, and constant and time-variant structures of such systems. It covers both retrospective and sequential problems, particularly theoretical methods of optimal detection. Such methods are constructed and their characteristics are analyzed both theoretically and experimentally. Suitable for researchers working in change-point analysis and stochastic modelling, the book includes theoretical details combined with computer simulations and practical applications. Its rigorous approach will be appreciated by those looking to delve into the details of the methods, as well as those looking to apply them.
Book Synopsis Climate Time Series Analysis by : Manfred Mudelsee
Download or read book Climate Time Series Analysis written by Manfred Mudelsee and published by Springer Science & Business Media. This book was released on 2010-08-26 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.
Book Synopsis Recent Advances in Econometrics and Statistics by : Matteo Barigozzi
Download or read book Recent Advances in Econometrics and Statistics written by Matteo Barigozzi and published by Springer Nature. This book was released on with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Change Point Analysis for Time Series by : Lajos Horváth
Download or read book Change Point Analysis for Time Series written by Lajos Horváth and published by Springer Nature. This book was released on with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Statistical Learning for Big Dependent Data by : Daniel Peña
Download or read book Statistical Learning for Big Dependent Data written by Daniel Peña and published by John Wiley & Sons. This book was released on 2021-03-02 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource Statistical Learning with Big Dependent Data delivers a comprehensive presentation of the statistical and machine learning methods useful for analyzing and forecasting large and dynamically dependent data sets. The book presents automatic procedures for modelling and forecasting large sets of time series data. Beginning with some visualization tools, the book discusses procedures and methods for finding outliers, clusters, and other types of heterogeneity in big dependent data. It then introduces various dimension reduction methods, including regularization and factor models such as regularized Lasso in the presence of dynamical dependence and dynamic factor models. The book also covers other forecasting procedures, including index models, partial least squares, boosting, and now-casting. It further presents machine-learning methods, including neural network, deep learning, classification and regression trees and random forests. Finally, procedures for modelling and forecasting spatio-temporal dependent data are also presented. Throughout the book, the advantages and disadvantages of the methods discussed are given. The book uses real-world examples to demonstrate applications, including use of many R packages. Finally, an R package associated with the book is available to assist readers in reproducing the analyses of examples and to facilitate real applications. Analysis of Big Dependent Data includes a wide variety of topics for modeling and understanding big dependent data, like: New ways to plot large sets of time series An automatic procedure to build univariate ARMA models for individual components of a large data set Powerful outlier detection procedures for large sets of related time series New methods for finding the number of clusters of time series and discrimination methods , including vector support machines, for time series Broad coverage of dynamic factor models including new representations and estimation methods for generalized dynamic factor models Discussion on the usefulness of lasso with time series and an evaluation of several machine learning procedure for forecasting large sets of time series Forecasting large sets of time series with exogenous variables, including discussions of index models, partial least squares, and boosting. Introduction of modern procedures for modeling and forecasting spatio-temporal data Perfect for PhD students and researchers in business, economics, engineering, and science: Statistical Learning with Big Dependent Data also belongs to the bookshelves of practitioners in these fields who hope to improve their understanding of statistical and machine learning methods for analyzing and forecasting big dependent data.
Book Synopsis Robustness in Statistical Forecasting by : Yuriy Kharin
Download or read book Robustness in Statistical Forecasting written by Yuriy Kharin and published by Springer Science & Business Media. This book was released on 2013-09-04 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers solutions to such topical problems as developing mathematical models and descriptions of typical distortions in applied forecasting problems; evaluating robustness for traditional forecasting procedures under distortionism and more.
Book Synopsis Inference for Functional Data with Applications by : Lajos Horváth
Download or read book Inference for Functional Data with Applications written by Lajos Horváth and published by Springer Science & Business Media. This book was released on 2012-05-08 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recently developed statistical methods and theory required for the application of the tools of functional data analysis to problems arising in geosciences, finance, economics and biology. It is concerned with inference based on second order statistics, especially those related to the functional principal component analysis. While it covers inference for independent and identically distributed functional data, its distinguishing feature is an in depth coverage of dependent functional data structures, including functional time series and spatially indexed functions. Specific inferential problems studied include two sample inference, change point analysis, tests for dependence in data and model residuals and functional prediction. All procedures are described algorithmically, illustrated on simulated and real data sets, and supported by a complete asymptotic theory. The book can be read at two levels. Readers interested primarily in methodology will find detailed descriptions of the methods and examples of their application. Researchers interested also in mathematical foundations will find carefully developed theory. The organization of the chapters makes it easy for the reader to choose an appropriate focus. The book introduces the requisite, and frequently used, Hilbert space formalism in a systematic manner. This will be useful to graduate or advanced undergraduate students seeking a self-contained introduction to the subject. Advanced researchers will find novel asymptotic arguments.
Book Synopsis Applied Change Point Problems in Statistics by : Bimal K. Sinha
Download or read book Applied Change Point Problems in Statistics written by Bimal K. Sinha and published by . This book was released on 1995 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The New Palgrave Dictionary of Economics by :
Download or read book The New Palgrave Dictionary of Economics written by and published by Springer. This book was released on 2016-05-18 with total page 7493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The award-winning The New Palgrave Dictionary of Economics, 2nd edition is now available as a dynamic online resource. Consisting of over 1,900 articles written by leading figures in the field including Nobel prize winners, this is the definitive scholarly reference work for a new generation of economists. Regularly updated! This product is a subscription based product.
Book Synopsis Dependence in Probability and Statistics by : Paul Doukhan
Download or read book Dependence in Probability and Statistics written by Paul Doukhan and published by Springer Science & Business Media. This book was released on 2010-07-23 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This account of recent works on weakly dependent, long memory and multifractal processes introduces new dependence measures for studying complex stochastic systems and includes other topics such as the dependence structure of max-stable processes.
Book Synopsis Elements of Copula Modeling with R by : Marius Hofert
Download or read book Elements of Copula Modeling with R written by Marius Hofert and published by Springer. This book was released on 2019-01-09 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the main theoretical findings related to copulas and shows how statistical modeling of multivariate continuous distributions using copulas can be carried out in the R statistical environment with the package copula (among others). Copulas are multivariate distribution functions with standard uniform univariate margins. They are increasingly applied to modeling dependence among random variables in fields such as risk management, actuarial science, insurance, finance, engineering, hydrology, climatology, and meteorology, to name a few. In the spirit of the Use R! series, each chapter combines key theoretical definitions or results with illustrations in R. Aimed at statisticians, actuaries, risk managers, engineers and environmental scientists wanting to learn about the theory and practice of copula modeling using R without an overwhelming amount of mathematics, the book can also be used for teaching a course on copula modeling.
Book Synopsis Nonstationarities in Hydrologic and Environmental Time Series by : A.R. Rao
Download or read book Nonstationarities in Hydrologic and Environmental Time Series written by A.R. Rao and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conventionally, time series have been studied either in the time domain or the frequency domain. The representation of a signal in the time domain is localized in time, i.e . the value of the signal at each instant in time is well defined . However, the time representation of a signal is poorly localized in frequency , i.e. little information about the frequency content of the signal at a certain frequency can be known by looking at the signal in the time domain . On the other hand, the representation of a signal in the frequency domain is well localized in frequency, but is poorly localized in time, and as a consequence it is impossible to tell when certain events occurred in time. In studying stationary or conditionally stationary processes with mixed spectra , the separate use of time domain and frequency domain analyses is sufficient to reveal the structure of the process . Results discussed in the previous chapters suggest that the time series analyzed in this book are conditionally stationary processes with mixed spectra. Additionally, there is some indication of nonstationarity, especially in longer time series.
Book Synopsis Conformal Prediction for Reliable Machine Learning by : Vineeth Balasubramanian
Download or read book Conformal Prediction for Reliable Machine Learning written by Vineeth Balasubramanian and published by Newnes. This book was released on 2014-04-23 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection
Book Synopsis Bayesian Robustness by : James O. Berger
Download or read book Bayesian Robustness written by James O. Berger and published by IMS. This book was released on 1996 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Trends in Mathematical, Information and Data Sciences by : Narayanaswamy Balakrishnan
Download or read book Trends in Mathematical, Information and Data Sciences written by Narayanaswamy Balakrishnan and published by Springer Nature. This book was released on 2022-06-27 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book involves ideas/results from the topics of mathematical, information, and data sciences, in connection with the main research interests of Professor Pardo that can be summarized as Information Theory with Applications to Statistical Inference. This book is a tribute to Professor Leandro Pardo, who has chaired the Department of Statistics and OR of the Complutense University in Madrid, and he has been also President of the Spanish Society of Statistics and Operations Research. In this way, the contributions have been structured into three parts, which often overlap to a greater or lesser extent, namely Trends in Mathematical Sciences (Part I) Trends in Information Sciences (Part II) Trends in Data Sciences (Part III) The contributions gathered in this book have offered either new developments from a theoretical and/or computational and/or applied point of view, or reviews of recent literature of outstanding developments. They have been applied through nice examples in climatology, chemistry, economics, engineering, geology, health sciences, physics, pandemics, and socioeconomic indicators. Consequently, the intended audience of this book is mainly statisticians, mathematicians, computer scientists, and so on, but users of these disciplines as well as experts in the involved applications may certainly find this book a very interesting read.