Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Robust Bayesian Analysis
Download Robust Bayesian Analysis full books in PDF, epub, and Kindle. Read online Robust Bayesian Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Robust Bayesian Analysis by : David Rios Insua
Download or read book Robust Bayesian Analysis written by David Rios Insua and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con cerns foundational aspects and describes decision-theoretical axiomatisa tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.
Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman
Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Book Synopsis Introduction to Bayesian Statistics by : William M. Bolstad
Download or read book Introduction to Bayesian Statistics written by William M. Bolstad and published by John Wiley & Sons. This book was released on 2016-09-02 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: "...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.
Book Synopsis Robust Statistics by : Frank R. Hampel
Download or read book Robust Statistics written by Frank R. Hampel and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.
Book Synopsis Bayesian Spectrum Analysis and Parameter Estimation by : G. Larry Bretthorst
Download or read book Bayesian Spectrum Analysis and Parameter Estimation written by G. Larry Bretthorst and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is essentially an extensive revision of my Ph.D. dissertation, [1J. It 1S primarily a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis; consequently, we have included a great deal of introductory and tutorial material. Any person with the equivalent of the mathematics background required for the graduate level study of physics should be able to follow the material contained in this book, though not without eIfort. From the time the dissertation was written until now (approximately one year) our understanding of the parameter estimation problem has changed extensively. We have tried to incorporate what we have learned into this book. I am indebted to a number of people who have aided me in preparing this docu ment: Dr. C. Ray Smith, Steve Finney, Juana Sunchez, Matthew Self, and Dr. Pat Gibbons who acted as readers and editors. In addition, I must extend my deepest thanks to Dr. Joseph Ackerman for his support during the time this manuscript was being prepared.
Book Synopsis Doing Bayesian Data Analysis by : John Kruschke
Download or read book Doing Bayesian Data Analysis written by John Kruschke and published by Academic Press. This book was released on 2010-11-25 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis tractable and accessible to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS, is for first year graduate students or advanced undergraduates and provides an accessible approach, as all mathematics is explained intuitively and with concrete examples. It assumes only algebra and 'rusty' calculus. Unlike other textbooks, this book begins with the basics, including essential concepts of probability and random sampling. The book gradually climbs all the way to advanced hierarchical modeling methods for realistic data. The text provides complete examples with the R programming language and BUGS software (both freeware), and begins with basic programming examples, working up gradually to complete programs for complex analyses and presentation graphics. These templates can be easily adapted for a large variety of students and their own research needs.The textbook bridges the students from their undergraduate training into modern Bayesian methods. - Accessible, including the basics of essential concepts of probability and random sampling - Examples with R programming language and BUGS software - Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). - Coverage of experiment planning - R and BUGS computer programming code on website - Exercises have explicit purposes and guidelines for accomplishment
Book Synopsis Introduction to Bayesian Statistics by : William M. Bolstad
Download or read book Introduction to Bayesian Statistics written by William M. Bolstad and published by John Wiley & Sons. This book was released on 2013-06-05 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "I cannot think of a better book for teachers of introductory statistics who want a readable and pedagogically sound text to introduce Bayesian statistics." —Statistics in Medical Research "[This book] is written in a lucid conversational style, which is so rare in mathematical writings. It does an excellent job of presenting Bayesian statistics as a perfectly reasonable approach to elementary problems in statistics." —STATS: The Magazine for Students of Statistics, American Statistical Association "Bolstad offers clear explanations of every concept and method making the book accessible and valuable to undergraduate and graduate students alike." —Journal of Applied Statistics The use of Bayesian methods in applied statistical analysis has become increasingly popular, yet most introductory statistics texts continue to only present the subject using frequentist methods. Introduction to Bayesian Statistics, Second Edition focuses on Bayesian methods that can be used for inference, and it also addresses how these methods compare favorably with frequentist alternatives. Teaching statistics from the Bayesian perspective allows for direct probability statements about parameters, and this approach is now more relevant than ever due to computer programs that allow practitioners to work on problems that contain many parameters. This book uniquely covers the topics typically found in an introductory statistics book—but from a Bayesian perspective—giving readers an advantage as they enter fields where statistics is used. This Second Edition provides: Extended coverage of Poisson and Gamma distributions Two new chapters on Bayesian inference for Poisson observations and Bayesian inference for the standard deviation for normal observations A twenty-five percent increase in exercises with selected answers at the end of the book A calculus refresher appendix and a summary on the use of statistical tables New computer exercises that use R functions and Minitab® macros for Bayesian analysis and Monte Carlo simulations Introduction to Bayesian Statistics, Second Edition is an invaluable textbook for advanced undergraduate and graduate-level statistics courses as well as a practical reference for statisticians who require a working knowledge of Bayesian statistics.
Book Synopsis Doing Bayesian Data Analysis by : John Kruschke
Download or read book Doing Bayesian Data Analysis written by John Kruschke and published by Academic Press. This book was released on 2014-11-11 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes' rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. - Accessible, including the basics of essential concepts of probability and random sampling - Examples with R programming language and JAGS software - Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) - Coverage of experiment planning - R and JAGS computer programming code on website - Exercises have explicit purposes and guidelines for accomplishment - Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs
Book Synopsis Robust Diagnostic Regression Analysis by : Anthony Atkinson
Download or read book Robust Diagnostic Regression Analysis written by Anthony Atkinson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphs are used to understand the relationship between a regression model and the data to which it is fitted. The authors develop new, highly informative graphs for the analysis of regression data and for the detection of model inadequacies. As well as illustrating new procedures, the authors develop the theory of the models used, particularly for generalized linear models. The book provides statisticians and scientists with a new set of tools for data analysis. Software to produce the plots is available on the authors website.
Book Synopsis Computational Bayesian Statistics by : M. Antónia Amaral Turkman
Download or read book Computational Bayesian Statistics written by M. Antónia Amaral Turkman and published by Cambridge University Press. This book was released on 2019-02-28 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This integrated introduction to fundamentals, computation, and software is your key to understanding and using advanced Bayesian methods.
Book Synopsis Contemporary Bayesian Econometrics and Statistics by : John Geweke
Download or read book Contemporary Bayesian Econometrics and Statistics written by John Geweke and published by John Wiley & Sons. This book was released on 2005-10-03 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.
Book Synopsis Understanding Robust and Exploratory Data Analysis by : David C. Hoaglin
Download or read book Understanding Robust and Exploratory Data Analysis written by David C. Hoaglin and published by John Wiley & Sons. This book was released on 2000-06-02 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in hardcover in 1982, this book is now offered in a Wiley Classics Library edition. A contributed volume, edited by some of the preeminent statisticians of the 20th century, Understanding of Robust and Exploratory Data Analysis explains why and how to use exploratory data analysis and robust and resistant methods in statistical practice.
Book Synopsis Bayesian Analysis in Statistics and Econometrics by : Donald A. Berry
Download or read book Bayesian Analysis in Statistics and Econometrics written by Donald A. Berry and published by John Wiley & Sons. This book was released on 1996 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a definitive work that captures the current state of knowledge of Bayesian Analysis in Statistics and Econometrics and attempts to move it forward. It covers such topics as foundations, forecasting inferential matters, regression, computation and applications.
Book Synopsis Variational Bayesian Learning Theory by : Shinichi Nakajima
Download or read book Variational Bayesian Learning Theory written by Shinichi Nakajima and published by Cambridge University Press. This book was released on 2019-07-11 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the theory of variational Bayesian learning summarizes recent developments and suggests practical applications.
Book Synopsis Doing Meta-Analysis with R by : Mathias Harrer
Download or read book Doing Meta-Analysis with R written by Mathias Harrer and published by CRC Press. This book was released on 2021-09-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
Book Synopsis Bayesian Nonparametrics by : J.K. Ghosh
Download or read book Bayesian Nonparametrics written by J.K. Ghosh and published by Springer Science & Business Media. This book was released on 2006-05-11 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.
Book Synopsis Statistical Rethinking by : Richard McElreath
Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.