Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Rigid Cohomology
Download Rigid Cohomology full books in PDF, epub, and Kindle. Read online Rigid Cohomology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Rigid Cohomology over Laurent Series Fields by : Christopher Lazda
Download or read book Rigid Cohomology over Laurent Series Fields written by Christopher Lazda and published by Springer. This book was released on 2016-04-27 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields will provide a useful tool for anyone interested in the arithmetic of varieties over local fields of positive characteristic. Appendices on important background material such as rigid cohomology and adic spaces make it as self-contained as possible, and an ideal starting point for graduate students looking to explore aspects of the classical theory of rigid cohomology and with an eye towards future research in the subject.
Book Synopsis Étale Cohomology of Rigid Analytic Varieties and Adic Spaces by : Roland Huber
Download or read book Étale Cohomology of Rigid Analytic Varieties and Adic Spaces written by Roland Huber and published by Springer. This book was released on 2013-07-01 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diese Forschungsmonographie von hohem mathematischen Niveau liefert einen neuen Zugang zu den rigid-analytischen Räumen, sowie ihrer etalen Kohomologie.USP: Aus der Froschung: Zahlentheorie und Algebraische Geometrie
Book Synopsis Rigid Analytic Geometry and Its Applications by : Jean Fresnel
Download or read book Rigid Analytic Geometry and Its Applications written by Jean Fresnel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.
Book Synopsis Rigid Cohomology by : Bernard Le Stum
Download or read book Rigid Cohomology written by Bernard Le Stum and published by Cambridge University Press. This book was released on 2007-09-06 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dating back to work of Berthelot, rigid cohomology appeared as a common generalization of Monsky-Washnitzer cohomology and crystalline cohomology. It is a p-adic Weil cohomology suitable for computing Zeta and L-functions for algebraic varieties on finite fields. Moreover, it is effective, in the sense that it gives algorithms to compute the number of rational points of such varieties. This is the first book to give a complete treatment of the theory, from full discussion of all the basics to descriptions of the very latest developments. Results and proofs are included that are not available elsewhere, local computations are explained, and many worked examples are given. This accessible tract will be of interest to researchers working in arithmetic geometry, p-adic cohomology theory, and related cryptographic areas.
Book Synopsis Geometric Aspects of Dwork Theory by : Alan Adolphson
Download or read book Geometric Aspects of Dwork Theory written by Alan Adolphson and published by Walter de Gruyter. This book was released on 2008-08-22 with total page 1150 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume book collects the lectures given during the three months cycle of lectures held in Northern Italy between May and July of 2001 to commemorate Professor Bernard Dwork (1923 - 1998). It presents a wide-ranging overview of some of the most active areas of contemporary research in arithmetic algebraic geometry, with special emphasis on the geometric applications of the p-adic analytic techniques originating in Dwork's work, their connection to various recent cohomology theories and to modular forms. The two volumes contain both important new research and illuminating survey articles written by leading experts in the field. The book will provide an indispensable resource for all those wishing to approach the frontiers of research in arithmetic algebraic geometry.
Book Synopsis Lecture Notes on Motivic Cohomology by : Carlo Mazza
Download or read book Lecture Notes on Motivic Cohomology written by Carlo Mazza and published by American Mathematical Soc.. This book was released on 2006 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).
Book Synopsis Computational Algebraic and Analytic Geometry by : Mika Seppälä
Download or read book Computational Algebraic and Analytic Geometry written by Mika Seppälä and published by American Mathematical Soc.. This book was released on 2012 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of three AMS Special Sessions on Computational Algebraic and Analytic Geometry for Low-Dimensional Varieties held January 8, 2007, in New Orleans, LA; January 6, 2009, in Washington, DC; and January 6, 2011, in New Orleans, LA. Algebraic, analytic, and geometric methods are used to study algebraic curves and Riemann surfaces from a variety of points of view. The object of the study is the same. The methods are different. The fact that a multitude of methods, stemming from very different mathematical cultures, can be used to study the same objects makes this area both fascinating and challenging.
Book Synopsis $p$-Adic Methods in Number Theory and Algebraic Geometry by : Alan Adolphson
Download or read book $p$-Adic Methods in Number Theory and Algebraic Geometry written by Alan Adolphson and published by American Mathematical Soc.. This book was released on 1992 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two meetings of the AMS in the autumn of 1989 - one at the Stevens Institute of Technology and the other at Ball State University - included Special Sessions on the role of p-adic methods in number theory and algebraic geometry. This volume grew out of these Special Sessions. Drawn from a wide area of mathematics, the articles presented here provide an excellent sampling of the broad range of trends and applications in p-adic methods.
Book Synopsis Algebraic Geometry by : Dan Abramovich
Download or read book Algebraic Geometry written by Dan Abramovich and published by American Mathematical Soc.. This book was released on 2009 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers information on various technical tools, from jet schemes and derived categories to algebraic stacks. This book delves into the geometry of various moduli spaces, including those of stable curves, stable maps, coherent sheaves, and abelian varieties. It describes various advances in higher-dimensional bi rational geometry.
Book Synopsis p-adic Differential Equations by : Kiran S. Kedlaya
Download or read book p-adic Differential Equations written by Kiran S. Kedlaya and published by Cambridge University Press. This book was released on 2010-06-10 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last 50 years the theory of p-adic differential equations has grown into an active area of research in its own right, and has important applications to number theory and to computer science. This book, the first comprehensive and unified introduction to the subject, improves and simplifies existing results as well as including original material. Based on a course given by the author at MIT, this modern treatment is accessible to graduate students and researchers. Exercises are included at the end of each chapter to help the reader review the material, and the author also provides detailed references to the literature to aid further study.
Book Synopsis Motivic Integration by : Antoine Chambert-Loir
Download or read book Motivic Integration written by Antoine Chambert-Loir and published by Springer. This book was released on 2018-09-15 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration. With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since.
Book Synopsis Weight Filtrations on Log Crystalline Cohomologies of Families of Open Smooth Varieties by : Yukiyoshi Nakkajima
Download or read book Weight Filtrations on Log Crystalline Cohomologies of Families of Open Smooth Varieties written by Yukiyoshi Nakkajima and published by Springer Science & Business Media. This book was released on 2008-09-15 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, the authors construct a theory of weights on the log crystalline cohomologies of families of open smooth varieties in characteristic p>0, by defining and constructing four filtered complexes. Fundamental properties of these filtered complexes are proved, in particular the p-adic purity, the functionality of three filtered complexes, the weight-filtered base change formula, the weight-filtered Künneth formula, the weight-filtered Poincaré duality, and the E2-degeneration of p-adic weight spectral sequences. In addition, the authors state some theorems on the weight filtration and the slope filtration on the rigid cohomology of a separated scheme of finite type over a perfect field of characteristic p>0.
Book Synopsis Resolution of Singularities by : Herwig Hauser
Download or read book Resolution of Singularities written by Herwig Hauser and published by Birkhäuser. This book was released on 2012-12-06 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: In September 1997, the Working Week on Resolution of Singularities was held at Obergurgl in the Tyrolean Alps. Its objective was to manifest the state of the art in the field and to formulate major questions for future research. The four courses given during this week were written up by the speakers and make up part I of this volume. They are complemented in part II by fifteen selected contributions on specific topics and resolution theories. The volume is intended to provide a broad and accessible introduction to resolution of singularities leading the reader directly to concrete research problems.
Book Synopsis Lectures on Formal and Rigid Geometry by : Siegfried Bosch
Download or read book Lectures on Formal and Rigid Geometry written by Siegfried Bosch and published by Springer. This book was released on 2014-08-22 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".
Book Synopsis Algebraic Curves and Cryptography by : Vijaya Kumar Murty
Download or read book Algebraic Curves and Cryptography written by Vijaya Kumar Murty and published by American Mathematical Soc.. This book was released on 2010 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields the topics covered in this volume include Schoof's $\ell$-adic point counting algorithm, the $p$-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on the Jacobians of $C_{ab}$ curves and zeta functions.
Book Synopsis The Arithmetic of Fundamental Groups by : Jakob Stix
Download or read book The Arithmetic of Fundamental Groups written by Jakob Stix and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the more than 100 years since the fundamental group was first introduced by Henri Poincaré it has evolved to play an important role in different areas of mathematics. Originally conceived as part of algebraic topology, this essential concept and its analogies have found numerous applications in mathematics that are still being investigated today, and which are explored in this volume, the result of a meeting at Heidelberg University that brought together mathematicians who use or study fundamental groups in their work with an eye towards applications in arithmetic. The book acknowledges the varied incarnations of the fundamental group: pro-finite, l-adic, p-adic, pro-algebraic and motivic. It explores a wealth of topics that range from anabelian geometry (in particular the section conjecture), the l-adic polylogarithm, gonality questions of modular curves, vector bundles in connection with monodromy, and relative pro-algebraic completions, to a motivic version of Minhyong Kim's non-abelian Chabauty method and p-adic integration after Coleman. The editor has also included the abstracts of all the talks given at the Heidelberg meeting, as well as the notes on Coleman integration and on Grothendieck's fundamental group with a view towards anabelian geometry taken from a series of introductory lectures given by Amnon Besser and Tamás Szamuely, respectively.
Download or read book Hiroshima Mathematical Journal written by and published by . This book was released on 1999 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: