Data Analytics in Reservoir Engineering

Download Data Analytics in Reservoir Engineering PDF Online Free

Author :
Publisher :
ISBN 13 : 9781613998205
Total Pages : 108 pages
Book Rating : 4.9/5 (982 download)

DOWNLOAD NOW!


Book Synopsis Data Analytics in Reservoir Engineering by : Sathish Sankaran

Download or read book Data Analytics in Reservoir Engineering written by Sathish Sankaran and published by . This book was released on 2020-10-29 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Analytics in Reservoir Engineering describes the relevance of data analytics for the oil and gas industry, with particular emphasis on reservoir engineering.

Applied Statistical Modeling and Data Analytics

Download Applied Statistical Modeling and Data Analytics PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128032804
Total Pages : 252 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Applied Statistical Modeling and Data Analytics by : Srikanta Mishra

Download or read book Applied Statistical Modeling and Data Analytics written by Srikanta Mishra and published by Elsevier. This book was released on 2017-10-27 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications

Reservoir Characterization, Modeling and Quantitative Interpretation

Download Reservoir Characterization, Modeling and Quantitative Interpretation PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 032399718X
Total Pages : 518 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Reservoir Characterization, Modeling and Quantitative Interpretation by : Shib Sankar Ganguli

Download or read book Reservoir Characterization, Modeling and Quantitative Interpretation written by Shib Sankar Ganguli and published by Elsevier. This book was released on 2023-10-27 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reservoir Characterization, Modeling and Quantitative Interpretation: Recent Workflows to Emerging Technologies offers a wide spectrum of reservoir characterization techniques and technologies, focusing on the latest breakthroughs and most efficient methodologies in hydrocarbon exploration and development. Topics covered include 4D seismic technologies, AVAz inversion, fracture characterization, multiscale imaging technologies, static and dynamic reservoir characterization, among others. The content is delivered through an inductive approach, which will help readers gain comprehensive insights on advanced practices and be able to relate them to other subareas of reservoir characterization, including CO2 storage and data-driven modeling. This will be especially useful for field scientists in collecting and analyzing field data, prospect evaluation, developing reservoir models, and adopting new technologies to mitigate exploration risk. They will be able to solve the practical and challenging problems faced in the field of reservoir characterization, as it will offer systematic industrial workflows covering every aspect of this branch of Earth Science, including subsurface geoscientific perspectives of carbon geosequestration. This resource is a 21st Century guide for exploration geologists, geoscience students at postgraduate level and above, and petrophysicists working in the oil and gas industry. - Covers the latest and most effective technologies in reservoir characterization, including Avo analysis, AVAz inversion, wave field separation and Machine Learning techniques - Provides a balanced blend of both theoretical and practical approaches for solving challenges in reservoir characterization - Includes detailed industry-standard practical workflows, along with code structures for algorithms and practice exercises

Intelligent Information and Database Systems

Download Intelligent Information and Database Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662493810
Total Pages : 844 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Information and Database Systems by : Ngoc-Thanh Nguyen

Download or read book Intelligent Information and Database Systems written by Ngoc-Thanh Nguyen and published by Springer. This book was released on 2016-03-08 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume proceedings of the ACIIDS 2016 conference, LNAI 9621 + 9622, constitutes the refereed proceedings of the 8th Asian Conference on Intelligent Information and Database Systems, held in Da Nang, Vietnam, in March 2016. The total of 153 full papers accepted for publication in these proceedings was carefully reviewed and selected from 392 submissions. They were organized in topical sections named: knowledge engineering and semantic Web; social networks and recommender systems; text processing and information retrieval; database systems and software engineering; intelligent information systems; decision support and control systems; machine learning and data mining; computer vision techniques; intelligent big data exploitation; cloud and network computing; multiple model approach to machine learning; advanced data mining techniques and applications; computational intelligence in data mining for complex problems; collective intelligence for service innovation, technology opportunity, e-learning, and fuzzy intelligent systems; analysis for image, video and motion data in life sciences; real world applications in engineering and technology; ontology-based software development; intelligent and context systems; modeling and optimization techniques in information systems, database systems and industrial systems; smart pattern processing for sports; and intelligent services for smart cities.

Machine Learning for Subsurface Characterization

Download Machine Learning for Subsurface Characterization PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128177373
Total Pages : 442 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Subsurface Characterization by : Siddharth Misra

Download or read book Machine Learning for Subsurface Characterization written by Siddharth Misra and published by Gulf Professional Publishing. This book was released on 2019-10-12 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning for Subsurface Characterization develops and applies neural networks, random forests, deep learning, unsupervised learning, Bayesian frameworks, and clustering methods for subsurface characterization. Machine learning (ML) focusses on developing computational methods/algorithms that learn to recognize patterns and quantify functional relationships by processing large data sets, also referred to as the "big data." Deep learning (DL) is a subset of machine learning that processes "big data" to construct numerous layers of abstraction to accomplish the learning task. DL methods do not require the manual step of extracting/engineering features; however, it requires us to provide large amounts of data along with high-performance computing to obtain reliable results in a timely manner. This reference helps the engineers, geophysicists, and geoscientists get familiar with data science and analytics terminology relevant to subsurface characterization and demonstrates the use of data-driven methods for outlier detection, geomechanical/electromagnetic characterization, image analysis, fluid saturation estimation, and pore-scale characterization in the subsurface. - Learn from 13 practical case studies using field, laboratory, and simulation data - Become knowledgeable with data science and analytics terminology relevant to subsurface characterization - Learn frameworks, concepts, and methods important for the engineer's and geoscientist's toolbox needed to support

Data-Driven Analytics for the Geological Storage of CO2

Download Data-Driven Analytics for the Geological Storage of CO2 PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315280795
Total Pages : 308 pages
Book Rating : 4.3/5 (152 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Analytics for the Geological Storage of CO2 by : Shahab Mohaghegh

Download or read book Data-Driven Analytics for the Geological Storage of CO2 written by Shahab Mohaghegh and published by CRC Press. This book was released on 2018-05-20 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven analytics is enjoying unprecedented popularity among oil and gas professionals. Many reservoir engineering problems associated with geological storage of CO2 require the development of numerical reservoir simulation models. This book is the first to examine the contribution of artificial intelligence and machine learning in data-driven analytics of fluid flow in porous environments, including saline aquifers and depleted gas and oil reservoirs. Drawing from actual case studies, this book demonstrates how smart proxy models can be developed for complex numerical reservoir simulation models. Smart proxy incorporates pattern recognition capabilities of artificial intelligence and machine learning to build smart models that learn the intricacies of physical, mechanical and chemical interactions using precise numerical simulations. This ground breaking technology makes it possible and practical to use high fidelity, complex numerical reservoir simulation models in the design, analysis and optimization of carbon storage in geological formations projects.

Data Science and Machine Learning Applications in Subsurface Engineering

Download Data Science and Machine Learning Applications in Subsurface Engineering PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1003860222
Total Pages : 368 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Machine Learning Applications in Subsurface Engineering by : Daniel Asante Otchere

Download or read book Data Science and Machine Learning Applications in Subsurface Engineering written by Daniel Asante Otchere and published by CRC Press. This book was released on 2024-02-06 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers unsupervised learning, supervised learning, clustering approaches, feature engineering, explainable AI and multioutput regression models for subsurface engineering problems. Processing voluminous and complex data sets are the primary focus of the field of machine learning (ML). ML aims to develop data-driven methods and computational algorithms that can learn to identify complex and non-linear patterns to understand and predict the relationships between variables by analysing extensive data. Although ML models provide the final output for predictions, several steps need to be performed to achieve accurate predictions. These steps, data pre-processing, feature selection, feature engineering and outlier removal, are all contained in this book. New models are also developed using existing ML architecture and learning theories to improve the performance of traditional ML models and handle small and big data without manual adjustments. This research-oriented book will help subsurface engineers, geophysicists, and geoscientists become familiar with data science and ML advances relevant to subsurface engineering. Additionally, it demonstrates the use of data-driven approaches for salt identification, seismic interpretation, estimating enhanced oil recovery factor, predicting pore fluid types, petrophysical property prediction, estimating pressure drop in pipelines, bubble point pressure prediction, enhancing drilling mud loss, smart well completion and synthetic well log predictions.

Reservoir Characterization

Download Reservoir Characterization PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111955621X
Total Pages : 578 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Reservoir Characterization by : Fred Aminzadeh

Download or read book Reservoir Characterization written by Fred Aminzadeh and published by John Wiley & Sons. This book was released on 2022-01-06 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: RESERVOIR CHARACTERIZATION The second volume in the series, “Sustainable Energy Engineering,” written by some of the foremost authorities in the world on reservoir engineering, this groundbreaking new volume presents the most comprehensive and updated new processes, equipment, and practical applications in the field. Long thought of as not being “sustainable,” newly discovered sources of petroleum and newly developed methods for petroleum extraction have made it clear that not only can the petroleum industry march toward sustainability, but it can be made “greener” and more environmentally friendly. Sustainable energy engineering is where the technical, economic, and environmental aspects of energy production intersect and affect each other. This collection of papers covers the strategic and economic implications of methods used to characterize petroleum reservoirs. Born out of the journal by the same name, formerly published by Scrivener Publishing, most of the articles in this volume have been updated, and there are some new additions, as well, to keep the engineer abreast of any updates and new methods in the industry. Truly a snapshot of the state of the art, this groundbreaking volume is a must-have for any petroleum engineer working in the field, environmental engineers, petroleum engineering students, and any other engineer or scientist working with reservoirs. This outstanding new volume: Is a collection of papers on reservoir characterization written by world-renowned engineers and scientists and presents them here, in one volume Contains in-depth coverage of not just the fundamentals of reservoir characterization, but the anomalies and challenges, set in application-based, real-world situations Covers reservoir characterization for the engineer to be able to solve daily problems on the job, whether in the field or in the office Deconstructs myths that are prevalent and deeply rooted in the industry and reconstructs logical solutions Is a valuable resource for the veteran engineer, new hire, or petroleum engineering student

Shale Analytics

Download Shale Analytics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319487531
Total Pages : 292 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Shale Analytics by : Shahab D. Mohaghegh

Download or read book Shale Analytics written by Shahab D. Mohaghegh and published by Springer. This book was released on 2017-02-09 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.

Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling

Download Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030178609
Total Pages : 646 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling by : Y. Z. Ma

Download or read book Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling written by Y. Z. Ma and published by Springer. This book was released on 2019-07-15 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.

Least Squares Support Vector Machines

Download Least Squares Support Vector Machines PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789812381514
Total Pages : 318 pages
Book Rating : 4.3/5 (815 download)

DOWNLOAD NOW!


Book Synopsis Least Squares Support Vector Machines by : Johan A. K. Suykens

Download or read book Least Squares Support Vector Machines written by Johan A. K. Suykens and published by World Scientific. This book was released on 2002 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing spareness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nystrom sampling with active selection of support vectors. The methods are illustrated with several examples.

Machine Learning in the Oil and Gas Industry

Download Machine Learning in the Oil and Gas Industry PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 9781484260937
Total Pages : 300 pages
Book Rating : 4.2/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in the Oil and Gas Industry by : Yogendra Narayan Pandey

Download or read book Machine Learning in the Oil and Gas Industry written by Yogendra Narayan Pandey and published by Apress. This book was released on 2020-11-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches. The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. Machine Learning in the Oil and Gas Industry covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering. Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms for solving real-life problems in the oil and gas industry. What You Will Learn Understanding the end-to-end industry life cycle and flow of data in the industrial operations of the oil and gas industry Get the basic concepts of computer programming and machine and deep learning required for implementing the algorithms used Study interesting industry problems that are good candidates for being solved by machine and deep learning Discover the practical considerations and challenges for executing machine and deep learning projects in the oil and gas industry Who This Book Is For Professionals in the oil and gas industry who can benefit from a practical understanding of the machine and deep learning approach to solving real-life problems.

Machine Learning and Big Data Analytics

Download Machine Learning and Big Data Analytics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031151755
Total Pages : 552 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Big Data Analytics by : Rajiv Misra

Download or read book Machine Learning and Big Data Analytics written by Rajiv Misra and published by Springer Nature. This book was released on 2023-06-06 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume on machine learning and big data analytics (Proceedings of ICMLBDA 2022) is intended to be used as a reference book for researchers and professionals to share their research and reports of new technologies and applications in Machine Learning and Big Data Analytics like biometric Recognition Systems, medical diagnosis, industries, telecommunications, AI Petri Nets Model-Based Diagnosis, gaming, stock trading, Intelligent Aerospace Systems, robot control, law, remote sensing and scientific discovery agents and multiagent systems; and natural language and Web intelligence. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the advanced Scientific Technologies, provide a correlation of multidisciplinary areas and become a point of great interest for Data Scientists, systems architects, developers, new researchers and graduate level students. This volume provides cutting-edge research from around the globe on this field. Current status, trends, future directions, opportunities, etc. are discussed, making it friendly for beginners and young researchers.

Algorithmic Learning in a Random World

Download Algorithmic Learning in a Random World PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387001524
Total Pages : 344 pages
Book Rating : 4.0/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Algorithmic Learning in a Random World by : Vladimir Vovk

Download or read book Algorithmic Learning in a Random World written by Vladimir Vovk and published by Springer Science & Business Media. This book was released on 2005-03-22 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.

Advanced Methods for Interpreting Geological and Geophysical Data

Download Advanced Methods for Interpreting Geological and Geophysical Data PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832551505
Total Pages : 500 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Advanced Methods for Interpreting Geological and Geophysical Data by : Ahmed M. Eldosouky

Download or read book Advanced Methods for Interpreting Geological and Geophysical Data written by Ahmed M. Eldosouky and published by Frontiers Media SA. This book was released on 2024-07-08 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: The introduction and application of advanced geological and geophysical methods can solve many problems related to geoscience. This Research Topic gives a thorough treatment of the interpretation of geological and geophysical data through advanced techniques and integrated approaches. It aims to create a more reliable integration of various geological and geophysical data in an exploration and new findings context weighing the strengths and limitations of the various methods in order to develop geophysical and geological models. It will also focus on the interpretation techniques for evaluating structural and sedimentological (stratigraphical) processes with applications within resource exploration, geohazards, seismology, seabed ecology and global climate.

Reservoir Simulations

Download Reservoir Simulations PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128209623
Total Pages : 342 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Reservoir Simulations by : Shuyu Sun

Download or read book Reservoir Simulations written by Shuyu Sun and published by Gulf Professional Publishing. This book was released on 2020-06-18 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reservoir Simulation: Machine Learning and Modeling helps the engineer step into the current and most popular advances in reservoir simulation, learning from current experiments and speeding up potential collaboration opportunities in research and technology. This reference explains common terminology, concepts, and equations through multiple figures and rigorous derivations, better preparing the engineer for the next step forward in a modeling project and avoid repeating existing progress. Well-designed exercises, case studies and numerical examples give the engineer a faster start on advancing their own cases. Both computational methods and engineering cases are explained, bridging the opportunities between computational science and petroleum engineering. This book delivers a critical reference for today's petroleum and reservoir engineer to optimize more complex developments. - Understand commonly used and recent progress on definitions, models, and solution methods used in reservoir simulation - World leading modeling and algorithms to study flow and transport behaviors in reservoirs, as well as the application of machine learning - Gain practical knowledge with hand-on trainings on modeling and simulation through well designed case studies and numerical examples.

Neural Information Processing

Download Neural Information Processing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642249655
Total Pages : 810 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Neural Information Processing by : Bao-Liang Lu

Download or read book Neural Information Processing written by Bao-Liang Lu and published by Springer. This book was released on 2011-11-12 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume set LNCS 7062, LNCS 7063, and LNCS 7064 constitutes the proceedings of the 18th International Conference on Neural Information Processing, ICONIP 2011, held in Shanghai, China, in November 2011. The 262 regular session papers presented were carefully reviewed and selected from numerous submissions. The papers of part I are organized in topical sections on perception, emotion and development, bioinformatics, biologically inspired vision and recognition, bio-medical data analysis, brain signal processing, brain-computer interfaces, brain-like systems, brain-realistic models for learning, memory and embodied cognition, Clifford algebraic neural networks, combining multiple learners, computational advances in bioinformatics, and computational-intelligent human computer interaction. The second volume is structured in topical sections on cybersecurity and data mining workshop, data mining and knowledge doscovery, evolutionary design and optimisation, graphical models, human-originated data analysis and implementation, information retrieval, integrating multiple nature-inspired approaches, kernel methods and support vector machines, and learning and memory. The third volume contains all the contributions connected with multi-agent systems, natural language processing and intelligent Web information processing, neural encoding and decoding, neural network models, neuromorphic hardware and implementations, object recognition, visual perception modelling, and advances in computational intelligence methods based pattern recognition.