Resampling Methods for Dependent Data

Download Resampling Methods for Dependent Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 147573803X
Total Pages : 382 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Resampling Methods for Dependent Data by : S. N. Lahiri

Download or read book Resampling Methods for Dependent Data written by S. N. Lahiri and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: By giving a detailed account of bootstrap methods and their properties for dependent data, this book provides illustrative numerical examples throughout. The book fills a gap in the literature covering research on re-sampling methods for dependent data that has witnessed vigorous growth over the last two decades but remains scattered in various statistics and econometrics journals. It can be used as a graduate level text and also as a research monograph for statisticians and econometricians.

Handbook of Discrete-Valued Time Series

Download Handbook of Discrete-Valued Time Series PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466577746
Total Pages : 484 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Discrete-Valued Time Series by : Richard A. Davis

Download or read book Handbook of Discrete-Valued Time Series written by Richard A. Davis and published by CRC Press. This book was released on 2016-01-06 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed ca

Empirical Process Techniques for Dependent Data

Download Empirical Process Techniques for Dependent Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461200997
Total Pages : 378 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Empirical Process Techniques for Dependent Data by : Herold Dehling

Download or read book Empirical Process Techniques for Dependent Data written by Herold Dehling and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Empirical process techniques for independent data have been used for many years in statistics and probability theory. These techniques have proved very useful for studying asymptotic properties of parametric as well as non-parametric statistical procedures. Recently, the need to model the dependence structure in data sets from many different subject areas such as finance, insurance, and telecommunications has led to new developments concerning the empirical distribution function and the empirical process for dependent, mostly stationary sequences. This work gives an introduction to this new theory of empirical process techniques, which has so far been scattered in the statistical and probabilistic literature, and surveys the most recent developments in various related fields. Key features: A thorough and comprehensive introduction to the existing theory of empirical process techniques for dependent data * Accessible surveys by leading experts of the most recent developments in various related fields * Examines empirical process techniques for dependent data, useful for studying parametric and non-parametric statistical procedures * Comprehensive bibliographies * An overview of applications in various fields related to empirical processes: e.g., spectral analysis of time-series, the bootstrap for stationary sequences, extreme value theory, and the empirical process for mixing dependent observations, including the case of strong dependence. To date this book is the only comprehensive treatment of the topic in book literature. It is an ideal introductory text that will serve as a reference or resource for classroom use in the areas of statistics, time-series analysis, extreme value theory, point process theory, and applied probability theory. Contributors: P. Ango Nze, M.A. Arcones, I. Berkes, R. Dahlhaus, J. Dedecker, H.G. Dehling,

Statistics and Simulation

Download Statistics and Simulation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319760351
Total Pages : 412 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Statistics and Simulation by : Jürgen Pilz

Download or read book Statistics and Simulation written by Jürgen Pilz and published by Springer. This book was released on 2018-05-17 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume features original contributions and invited review articles on mathematical statistics, statistical simulation and experimental design. The selected peer-reviewed contributions originate from the 8th International Workshop on Simulation held in Vienna in 2015. The book is intended for mathematical statisticians, Ph.D. students and statisticians working in medicine, engineering, pharmacy, psychology, agriculture and other related fields. The International Workshops on Simulation are devoted to statistical techniques in stochastic simulation, data collection, design of scientific experiments and studies representing broad areas of interest. The first 6 workshops took place in St. Petersburg, Russia, in 1994 – 2009 and the 7th workshop was held in Rimini, Italy, in 2013.

Contemporaneous Event Studies in Corporate Finance

Download Contemporaneous Event Studies in Corporate Finance PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030538095
Total Pages : 239 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Contemporaneous Event Studies in Corporate Finance by : Jau-Lian Jeng

Download or read book Contemporaneous Event Studies in Corporate Finance written by Jau-Lian Jeng and published by Springer Nature. This book was released on 2020-11-03 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a comprehensive overview of event study methodology in the field of corporate finance, this book discusses how traditional methods verify the significance and insignificance of events in statistical sampling, and emphasize possible deviation from the statistics of interest. However, the author illustrates the flaws of conventional methodology and proposes alternative methods which can be used for a more robust study of estimating normal and abnormal returns. Traditional methods fail to recognize that the importance of an event will also influence the frequency of the occurrence of the event, and consequently they produce subjective sampling results. This book highlights contemporaneous recursive methods which can be used to track down normal returns and avoid arbitrary determination for the estimation and event period. In addition, the author offers an alternative monitoring scheme to identify the events of concern. Addressing a need for more objective sampling methods in corporate finance event studies, this timely book will appeal to students and academics researching financial econometrics and time series analysis, corporate finance and capital markets.

Monte Carlo Simulation and Resampling Methods for Social Science

Download Monte Carlo Simulation and Resampling Methods for Social Science PDF Online Free

Author :
Publisher : SAGE Publications
ISBN 13 : 1483324923
Total Pages : 304 pages
Book Rating : 4.4/5 (833 download)

DOWNLOAD NOW!


Book Synopsis Monte Carlo Simulation and Resampling Methods for Social Science by : Thomas M. Carsey

Download or read book Monte Carlo Simulation and Resampling Methods for Social Science written by Thomas M. Carsey and published by SAGE Publications. This book was released on 2013-08-05 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.

Introduction to Statistics Through Resampling Methods and Microsoft Office Excel

Download Introduction to Statistics Through Resampling Methods and Microsoft Office Excel PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471741760
Total Pages : 245 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Statistics Through Resampling Methods and Microsoft Office Excel by : Phillip I. Good

Download or read book Introduction to Statistics Through Resampling Methods and Microsoft Office Excel written by Phillip I. Good and published by John Wiley & Sons. This book was released on 2005-07-22 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn statistical methods quickly and easily with the discovery method With its emphasis on the discovery method, this publication encourages readers to discover solutions on their own rather than simply copy answers or apply a formula by rote. Readers quickly master and learn to apply statistical methods, such as bootstrap, decision trees, t-test, and permutations to better characterize, report, test, and classify their research findings. In addition to traditional methods, specialized methods are covered, allowing readers to select and apply the most effective method for their research, including: * Tests and estimation procedures for one, two, and multiple samples * Model building * Multivariate analysis * Complex experimental design Throughout the text, Microsoft Office Excel(r) is used to illustrate new concepts and assist readers in completing exercises. An Excel Primer is included as an Appendix for readers who need to learn or brush up on their Excel skills. Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. All the pedagogical tools needed to facilitate quick learning are provided: * More than 100 exercises scattered throughout the text stimulate readers' thinking and actively engage them in applying their newfound skills * Companion FTP site provides access to all data sets discussed in the text * An Instructor's Manual is available upon request from the publisher * Dozens of thought-provoking questions in the final chapter assist readers in applying statistics to solve real-life problems * Helpful appendices include an index to Excel and Excel add-in functions This text serves as an excellent introduction to statistics for students in all disciplines. The accessible style and focus on real-life problem solving are perfectly suited to both students and practitioners.

Nonlinear Time Series Analysis with R

Download Nonlinear Time Series Analysis with R PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0198782934
Total Pages : 371 pages
Book Rating : 4.1/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Time Series Analysis with R by : Ray G. Huffaker

Download or read book Nonlinear Time Series Analysis with R written by Ray G. Huffaker and published by Oxford University Press. This book was released on 2017 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their choice of a modelling approach corresponding to reality. The book is targeted to non-mathematicians with limitedknowledge of nonlinear dynamics; in particular, professionals and graduate students in engineering and the biophysical and social sciences. The book makes readers active learners with hands-on computerexperiments in R code directing them through Nonlinear Time Series Analysis (NLTS). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework--condensed from sound empirical practices recommended in the literature--that details a step-by-step procedure for applying NLTS in real-world data diagnostics.

Statistical Methods for Modeling Human Dynamics

Download Statistical Methods for Modeling Human Dynamics PDF Online Free

Author :
Publisher : Taylor & Francis
ISBN 13 : 1135262594
Total Pages : 445 pages
Book Rating : 4.1/5 (352 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods for Modeling Human Dynamics by : Sy-Miin Chow

Download or read book Statistical Methods for Modeling Human Dynamics written by Sy-Miin Chow and published by Taylor & Francis. This book was released on 2011-02-25 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary volume features contributions from researchers in the fields of psychology, neuroscience, statistics, computer science, and physics. State-of-the-art techniques and applications used to analyze data obtained from studies in cognition, emotion, and electrophysiology are reviewed along with techniques for modeling in real time and for examining lifespan cognitive changes, for conceptualizing change using item response, nonparametric and hierarchical models, and control theory-inspired techniques for deriving diagnoses in medical and psychotherapeutic settings. The syntax for running the analyses presented in the book is provided on the Psychology Press site. Most of the programs are written in R while others are for Matlab, SAS, Win-BUGS, and DyFA. Readers will appreciate a review of the latest methodological techniques developed in the last few years. Highlights include an examination of: Statistical and mathematical modeling techniques for the analysis of brain imaging such as EEGs, fMRIs, and other neuroscience data Dynamic modeling techniques for intensive repeated measurement data Panel modeling techniques for fewer time points data State-space modeling techniques for psychological data Techniques used to analyze reaction time data. Each chapter features an introductory overview of the techniques needed to understand the chapter, a summary, and numerous examples. Each self-contained chapter can be read on its own and in any order. Divided into three major sections, the book examines techniques for examining within-person derivations in change patterns, intra-individual change, and inter-individual differences in change and interpersonal dynamics. Intended for advanced students and researchers, this book will appeal to those interested in applying state-of-the-art dynamic modeling techniques to the the study of neurological, developmental, cognitive, and social/personality psychology, as well as neuroscience, computer science, and engineering.

Introduction to Statistical Mediation Analysis

Download Introduction to Statistical Mediation Analysis PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1136676147
Total Pages : 488 pages
Book Rating : 4.1/5 (366 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Statistical Mediation Analysis by : David MacKinnon

Download or read book Introduction to Statistical Mediation Analysis written by David MacKinnon and published by Routledge. This book was released on 2012-10-02 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume introduces the statistical, methodological, and conceptual aspects of mediation analysis. Applications from health, social, and developmental psychology, sociology, communication, exercise science, and epidemiology are emphasized throughout. Single-mediator, multilevel, and longitudinal models are reviewed. The author's goal is to help the reader apply mediation analysis to their own data and understand its limitations. Each chapter features an overview, numerous worked examples, a summary, and exercises (with answers to the odd numbered questions). The accompanying CD contains outputs described in the book from SAS, SPSS, LISREL, EQS, MPLUS, and CALIS, and a program to simulate the model. The notation used is consistent with existing literature on mediation in psychology. The book opens with a review of the types of research questions the mediation model addresses. Part II describes the estimation of mediation effects including assumptions, statistical tests, and the construction of confidence limits. Advanced models including mediation in path analysis, longitudinal models, multilevel data, categorical variables, and mediation in the context of moderation are then described. The book closes with a discussion of the limits of mediation analysis, additional approaches to identifying mediating variables, and future directions. Introduction to Statistical Mediation Analysis is intended for researchers and advanced students in health, social, clinical, and developmental psychology as well as communication, public health, nursing, epidemiology, and sociology. Some exposure to a graduate level research methods or statistics course is assumed. The overview of mediation analysis and the guidelines for conducting a mediation analysis will be appreciated by all readers.

The SAGE Handbook of Quantitative Methods in Psychology

Download The SAGE Handbook of Quantitative Methods in Psychology PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 144620667X
Total Pages : 801 pages
Book Rating : 4.4/5 (462 download)

DOWNLOAD NOW!


Book Synopsis The SAGE Handbook of Quantitative Methods in Psychology by : Roger E Millsap

Download or read book The SAGE Handbook of Quantitative Methods in Psychology written by Roger E Millsap and published by SAGE. This book was released on 2009-07-23 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: `I often... wonder to myself whether the field needs another book, handbook, or encyclopedia on this topic. In this case I think that the answer is truly yes. The handbook is well focused on important issues in the field, and the chapters are written by recognized authorities in their fields. The book should appeal to anyone who wants an understanding of important topics that frequently go uncovered in graduate education in psychology′ - David C Howell, Professor Emeritus, University of Vermont Quantitative psychology is arguably one of the oldest disciplines within the field of psychology and nearly all psychologists are exposed to quantitative psychology in some form. While textbooks in statistics, research methods and psychological measurement exist, none offer a unified treatment of quantitative psychology. The SAGE Handbook of Quantitative Methods in Psychology does just that. Each chapter covers a methodological topic with equal attention paid to established theory and the challenges facing methodologists as they address new research questions using that particular methodology. The reader will come away from each chapter with a greater understanding of the methodology being addressed as well as an understanding of the directions for future developments within that methodological area. Drawing on a global scholarship, the Handbook is divided into seven parts: Part One: Design and Inference: addresses issues in the inference of causal relations from experimental and non-experimental research, along with the design of true experiments and quasi-experiments, and the problem of missing data due to various influences such as attrition or non-compliance. Part Two: Measurement Theory: begins with a chapter on classical test theory, followed by the common factor analysis model as a model for psychological measurement. The models for continuous latent variables in item-response theory are covered next, followed by a chapter on discrete latent variable models as represented in latent class analysis. Part Three: Scaling Methods: covers metric and non-metric scaling methods as developed in multidimensional scaling, followed by consideration of the scaling of discrete measures as found in dual scaling and correspondence analysis. Models for preference data such as those found in random utility theory are covered next. Part Four: Data Analysis: includes chapters on regression models, categorical data analysis, multilevel or hierarchical models, resampling methods, robust data analysis, meta-analysis, Bayesian data analysis, and cluster analysis. Part Five: Structural Equation Models: addresses topics in general structural equation modeling, nonlinear structural equation models, mixture models, and multilevel structural equation models. Part Six: Longitudinal Models: covers the analysis of longitudinal data via mixed modeling, time series analysis and event history analysis. Part Seven: Specialized Models: covers specific topics including the analysis of neuro-imaging data and functional data-analysis.

Advanced Data Analysis in Neuroscience

Download Advanced Data Analysis in Neuroscience PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319599763
Total Pages : 308 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Advanced Data Analysis in Neuroscience by : Daniel Durstewitz

Download or read book Advanced Data Analysis in Neuroscience written by Daniel Durstewitz and published by Springer. This book was released on 2017-09-15 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanatory frameworks, but become powerful, quantitative data-analytical tools in themselves that enable researchers to look beyond the data surface and unravel underlying mechanisms. Interactive examples of most methods are provided through a package of MatLab routines, encouraging a playful approach to the subject, and providing readers with a better feel for the practical aspects of the methods covered. "Computational neuroscience is essential for integrating and providing a basis for understanding the myriads of remarkable laboratory data on nervous system functions. Daniel Durstewitz has excellently covered the breadth of computational neuroscience from statistical interpretations of data to biophysically based modeling of the neurobiological sources of those data. His presentation is clear, pedagogically sound, and readily useable by experts and beginners alike. It is a pleasure to recommend this very well crafted discussion to experimental neuroscientists as well as mathematically well versed Physicists. The book acts as a window to the issues, to the questions, and to the tools for finding the answers to interesting inquiries about brains and how they function." Henry D. I. Abarbanel Physics and Scripps Institution of Oceanography, University of California, San Diego “This book delivers a clear and thorough introduction to sophisticated analysis approaches useful in computational neuroscience. The models described and the examples provided will help readers develop critical intuitions into what the methods reveal about data. The overall approach of the book reflects the extensive experience Prof. Durstewitz has developed as a leading practitioner of computational neuroscience. “ Bruno B. Averbeck

Nonlinear Time Series Analysis in the Geosciences

Download Nonlinear Time Series Analysis in the Geosciences PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540789383
Total Pages : 392 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Time Series Analysis in the Geosciences by : Reik V. Donner

Download or read book Nonlinear Time Series Analysis in the Geosciences written by Reik V. Donner and published by Springer. This book was released on 2008-08-03 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The enormous progress over the last decades in our understanding of the mechanisms behind the complex system “Earth” is to a large extent based on the availability of enlarged data sets and sophisticated methods for their analysis. Univariate as well as multivariate time series are a particular class of such data which are of special importance for studying the dynamical p- cesses in complex systems. Time series analysis theory and applications in geo- and astrophysics have always been mutually stimulating, starting with classical (linear) problems like the proper estimation of power spectra, which hasbeenputforwardbyUdnyYule(studyingthefeaturesofsunspotactivity) and, later, by John Tukey. In the second half of the 20th century, more and more evidence has been accumulated that most processes in nature are intrinsically non-linear and thus cannot be su?ciently studied by linear statistical methods. With mat- matical developments in the ?elds of dynamic system’s theory, exempli?ed by Edward Lorenz’s pioneering work, and fractal theory, starting with the early fractal concepts inferred by Harold Edwin Hurst from the analysis of geoph- ical time series,nonlinear methods became available for time seriesanalysis as well. Over the last decades, these methods have attracted an increasing int- est in various branches of the earth sciences. The world’s leading associations of geoscientists, the American Geophysical Union (AGU) and the European Geosciences Union (EGU) have reacted to these trends with the formation of special nonlinear focus groups and topical sections, which are actively present at the corresponding annual assemblies.

The Jackknife and Bootstrap

Download The Jackknife and Bootstrap PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461207959
Total Pages : 533 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis The Jackknife and Bootstrap by : Jun Shao

Download or read book The Jackknife and Bootstrap written by Jun Shao and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: The jackknife and bootstrap are the most popular data-resampling meth ods used in statistical analysis. The resampling methods replace theoreti cal derivations required in applying traditional methods (such as substitu tion and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples. Because of the availability of inexpensive and fast computing, these computer-intensive methods have caught on very rapidly in recent years and are particularly appreciated by applied statisticians. The primary aims of this book are (1) to provide a systematic introduction to the theory of the jackknife, the bootstrap, and other resampling methods developed in the last twenty years; (2) to provide a guide for applied statisticians: practitioners often use (or misuse) the resampling methods in situations where no theoretical confirmation has been made; and (3) to stimulate the use of the jackknife and bootstrap and further devel opments of the resampling methods. The theoretical properties of the jackknife and bootstrap methods are studied in this book in an asymptotic framework. Theorems are illustrated by examples. Finite sample properties of the jackknife and bootstrap are mostly investigated by examples and/or empirical simulation studies. In addition to the theory for the jackknife and bootstrap methods in problems with independent and identically distributed (Li.d.) data, we try to cover, as much as we can, the applications of the jackknife and bootstrap in various complicated non-Li.d. data problems.

Climate Time Series Analysis

Download Climate Time Series Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9048194822
Total Pages : 497 pages
Book Rating : 4.0/5 (481 download)

DOWNLOAD NOW!


Book Synopsis Climate Time Series Analysis by : Manfred Mudelsee

Download or read book Climate Time Series Analysis written by Manfred Mudelsee and published by Springer Science & Business Media. This book was released on 2010-08-26 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.

Handbook of Environmental and Ecological Statistics

Download Handbook of Environmental and Ecological Statistics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351648543
Total Pages : 798 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Environmental and Ecological Statistics by : Alan E. Gelfand

Download or read book Handbook of Environmental and Ecological Statistics written by Alan E. Gelfand and published by CRC Press. This book was released on 2019-01-15 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes. The 21st century statistics community has become increasingly interdisciplinary, bringing a large collection of modern tools to all areas of application in environmental processes. In addition, the environmental community has substantially increased its scope of data collection including observational data, satellite-derived data, and computer model output. The resultant impact in this latter community has been substantial; no longer are simple regression and analysis of variance methods adequate. The contribution of this handbook is to assemble a state-of-the-art view of this interface. Features: An internationally regarded editorial team. A distinguished collection of contributors. A thoroughly contemporary treatment of a substantial interdisciplinary interface. Written to engage both statisticians as well as quantitative environmental researchers. 34 chapters covering methodology, ecological processes, environmental exposure, and statistical methods in climate science.

Resampling-Based Multiple Testing

Download Resampling-Based Multiple Testing PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471557616
Total Pages : 382 pages
Book Rating : 4.5/5 (576 download)

DOWNLOAD NOW!


Book Synopsis Resampling-Based Multiple Testing by : Peter H. Westfall

Download or read book Resampling-Based Multiple Testing written by Peter H. Westfall and published by John Wiley & Sons. This book was released on 1993-01-12 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines recent developments in resampling technology (including the bootstrap) with new methods for multiple testing that are easy to use, convenient to report and widely applicable. Software from SAS Institute is available to execute many of the methods and programming is straightforward for other applications. Explains how to summarize results using adjusted p-values which do not necessitate cumbersome table look-ups. Demonstrates how to incorporate logical constraints among hypotheses, further improving power.