Algebraic Geometry

Download Algebraic Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475738498
Total Pages : 511 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry by : Robin Hartshorne

Download or read book Algebraic Geometry written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Algebraic Geometry for Scientists and Engineers

Download Algebraic Geometry for Scientists and Engineers PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821815350
Total Pages : 311 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry for Scientists and Engineers by : Shreeram Shankar Abhyankar

Download or read book Algebraic Geometry for Scientists and Engineers written by Shreeram Shankar Abhyankar and published by American Mathematical Soc.. This book was released on 1990 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on lectures presented in courses on algebraic geometry taught by the author at Purdue University, this book covers various topics in the theory of algebraic curves and surfaces, such as rational and polynomial parametrization, functions and differentials on a curve, branches and valuations, and resolution of singularities.

Kiselev's Geometry

Download Kiselev's Geometry PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 192 pages
Book Rating : 4.:/5 (318 download)

DOWNLOAD NOW!


Book Synopsis Kiselev's Geometry by : Andreĭ Petrovich Kiselev

Download or read book Kiselev's Geometry written by Andreĭ Petrovich Kiselev and published by . This book was released on 2008 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.

Resolution of Curve and Surface Singularities in Characteristic Zero

Download Resolution of Curve and Surface Singularities in Characteristic Zero PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402020295
Total Pages : 506 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Resolution of Curve and Surface Singularities in Characteristic Zero by : K. Kiyek

Download or read book Resolution of Curve and Surface Singularities in Characteristic Zero written by K. Kiyek and published by Springer Science & Business Media. This book was released on 2012-09-11 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it • To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}.

Resolution of Singularities

Download Resolution of Singularities PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821835556
Total Pages : 198 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Resolution of Singularities by : Steven Dale Cutkosky

Download or read book Resolution of Singularities written by Steven Dale Cutkosky and published by American Mathematical Soc.. This book was released on 2004 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of singularity is basic to mathematics. In algebraic geometry, the resolution of singularities by simple algebraic mappings is truly a fundamental problem. It has a complete solution in characteristic zero and partial solutions in arbitrary characteristic. The resolution of singularities in characteristic zero is a key result used in many subjects besides algebraic geometry, such as differential equations, dynamical systems, number theory, the theory of $\mathcal{D}$-modules, topology, and mathematical physics. This book is a rigorous, but instructional, look at resolutions. A simplified proof, based on canonical resolutions, is given for characteristic zero. There are several proofs given for resolution of curves and surfaces in characteristic zero and arbitrary characteristic. Besides explaining the tools needed for understanding resolutions, Cutkosky explains the history and ideas, providing valuable insight and intuition for the novice (or expert). There are many examples and exercises throughout the text. The book is suitable for a second course on an exciting topic in algebraic geometry. A core course on resolutions is contained in Chapters 2 through 6. Additional topics are covered in the final chapters. The prerequisite is a course covering the basic notions of schemes and sheaves.

Common Core Geometry

Download Common Core Geometry PDF Online Free

Author :
Publisher :
ISBN 13 : 9781944719234
Total Pages : pages
Book Rating : 4.7/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Common Core Geometry by : Kirk Weiler

Download or read book Common Core Geometry written by Kirk Weiler and published by . This book was released on 2018-04 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometry and Light

Download Geometry and Light PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486134903
Total Pages : 290 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Light by : Ulf Leonhardt

Download or read book Geometry and Light written by Ulf Leonhardt and published by Courier Corporation. This book was released on 2012-07-06 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and graduate students of engineering, physics, and mathematics and scientific researchers of all types, this is the first authoritative text on invisibility and the science behind it. More than 100 full-color illustrations, plus exercises with solutions. 2010 edition.

Numbers and Geometry

Download Numbers and Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461206871
Total Pages : 348 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Numbers and Geometry by : John Stillwell

Download or read book Numbers and Geometry written by John Stillwell and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A beautiful and relatively elementary account of a part of mathematics where three main fields - algebra, analysis and geometry - meet. The book provides a broad view of these subjects at the level of calculus, without being a calculus book. Its roots are in arithmetic and geometry, the two opposite poles of mathematics, and the source of historic conceptual conflict. The resolution of this conflict, and its role in the development of mathematics, is one of the main stories in the book. Stillwell has chosen an array of exciting and worthwhile topics and elegantly combines mathematical history with mathematics. He covers the main ideas of Euclid, but with 2000 years of extra insights attached. Presupposing only high school algebra, it can be read by any well prepared student entering university. Moreover, this book will be popular with graduate students and researchers in mathematics due to its attractive and unusual treatment of fundamental topics. A set of well-written exercises at the end of each section allows new ideas to be instantly tested and reinforced.

An Undergraduate Primer in Algebraic Geometry

Download An Undergraduate Primer in Algebraic Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030710211
Total Pages : 327 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis An Undergraduate Primer in Algebraic Geometry by : Ciro Ciliberto

Download or read book An Undergraduate Primer in Algebraic Geometry written by Ciro Ciliberto and published by Springer Nature. This book was released on 2021-05-05 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of two parts. The first is devoted to an introduction to basic concepts in algebraic geometry: affine and projective varieties, some of their main attributes and examples. The second part is devoted to the theory of curves: local properties, affine and projective plane curves, resolution of singularities, linear equivalence of divisors and linear series, Riemann–Roch and Riemann–Hurwitz Theorems. The approach in this book is purely algebraic. The main tool is commutative algebra, from which the needed results are recalled, in most cases with proofs. The prerequisites consist of the knowledge of basics in affine and projective geometry, basic algebraic concepts regarding rings, modules, fields, linear algebra, basic notions in the theory of categories, and some elementary point–set topology. This book can be used as a textbook for an undergraduate course in algebraic geometry. The users of the book are not necessarily intended to become algebraic geometers but may be interested students or researchers who want to have a first smattering in the topic. The book contains several exercises, in which there are more examples and parts of the theory that are not fully developed in the text. Of some exercises, there are solutions at the end of each chapter.

Plane and Solid Geometry

Download Plane and Solid Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387782419
Total Pages : 357 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Plane and Solid Geometry by : J.M. Aarts

Download or read book Plane and Solid Geometry written by J.M. Aarts and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book on Euclidean geometry that covers the standard material in a completely new way, while also introducing a number of new topics that would be suitable as a junior-senior level undergraduate textbook. The author does not begin in the traditional manner with abstract geometric axioms. Instead, he assumes the real numbers, and begins his treatment by introducing such modern concepts as a metric space, vector space notation, and groups, and thus lays a rigorous basis for geometry while at the same time giving the student tools that will be useful in other courses.

Topology and Geometry

Download Topology and Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387979263
Total Pages : 580 pages
Book Rating : 4.3/5 (879 download)

DOWNLOAD NOW!


Book Synopsis Topology and Geometry by : Glen E. Bredon

Download or read book Topology and Geometry written by Glen E. Bredon and published by Springer Science & Business Media. This book was released on 1993-06-24 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS

Multiple View Geometry in Computer Vision

Download Multiple View Geometry in Computer Vision PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139449141
Total Pages : 676 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Multiple View Geometry in Computer Vision by : Richard Hartley

Download or read book Multiple View Geometry in Computer Vision written by Richard Hartley and published by Cambridge University Press. This book was released on 2004-03-25 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has been updated with additional examples and appendices) and significant new results which have appeared since the first edition. Comprehensive background material is provided, so readers familiar with linear algebra and basic numerical methods can understand the projective geometry and estimation algorithms presented, and implement the algorithms directly from the book.

Algebraic Geometry and Statistical Learning Theory

Download Algebraic Geometry and Statistical Learning Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521864674
Total Pages : 295 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry and Statistical Learning Theory by : Sumio Watanabe

Download or read book Algebraic Geometry and Statistical Learning Theory written by Sumio Watanabe and published by Cambridge University Press. This book was released on 2009-08-13 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.

Discrete and Computational Geometry

Download Discrete and Computational Geometry PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400838983
Total Pages : 270 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Discrete and Computational Geometry by : Satyan L. Devadoss

Download or read book Discrete and Computational Geometry written by Satyan L. Devadoss and published by Princeton University Press. This book was released on 2011-04-11 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also features numerous exercises and unsolved problems. The essential introduction to discrete and computational geometry Covers traditional topics as well as new and advanced material Features numerous full-color illustrations, exercises, and unsolved problems Suitable for sophomores in mathematics, computer science, engineering, or physics Rigorous but accessible An online solutions manual is available (for teachers only)

Patty Paper Geometry

Download Patty Paper Geometry PDF Online Free

Author :
Publisher : Kendall/Hunt Publishing Company
ISBN 13 : 9781559530743
Total Pages : 262 pages
Book Rating : 4.5/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Patty Paper Geometry by : Michael Serra

Download or read book Patty Paper Geometry written by Michael Serra and published by Kendall/Hunt Publishing Company. This book was released on 1994 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Local Algebra

Download Local Algebra PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662042037
Total Pages : 139 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Local Algebra by : Jean-Pierre Serre

Download or read book Local Algebra written by Jean-Pierre Serre and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an English translation of the now classic "Algbre Locale - Multiplicits" originally published by Springer as LNM 11. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities. Many modifications to the original French text have been made for this English edition, making the text easier to read, without changing its intended informal character.

Introduction to Singularities

Download Introduction to Singularities PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 443155081X
Total Pages : 227 pages
Book Rating : 4.4/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Singularities by : Shihoko Ishii

Download or read book Introduction to Singularities written by Shihoko Ishii and published by Springer. This book was released on 2014-11-19 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundaries of which correspond to singular varieties. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dim ensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied.