Regularized Approximate Policy Iteration using kernel for on-line Reinforcement Learning

Download Regularized Approximate Policy Iteration using kernel for on-line Reinforcement Learning PDF Online Free

Author :
Publisher : gennaro esposito
ISBN 13 :
Total Pages : 196 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Regularized Approximate Policy Iteration using kernel for on-line Reinforcement Learning by : Gennaro Esposito, PhD

Download or read book Regularized Approximate Policy Iteration using kernel for on-line Reinforcement Learning written by Gennaro Esposito, PhD and published by gennaro esposito. This book was released on 2015-06-30 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Reinforcement Learning and Dynamic Programming Using Function Approximators

Download Reinforcement Learning and Dynamic Programming Using Function Approximators PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439821097
Total Pages : 280 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning and Dynamic Programming Using Function Approximators by : Lucian Busoniu

Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Algorithms for Reinforcement Learning

Download Algorithms for Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015517
Total Pages : 89 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Reinforcement Learning by : Csaba Grossi

Download or read book Algorithms for Reinforcement Learning written by Csaba Grossi and published by Springer Nature. This book was released on 2022-05-31 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

Artificial Intelligence: Theories, Models and Applications

Download Artificial Intelligence: Theories, Models and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642304486
Total Pages : 399 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence: Theories, Models and Applications by : Ilias Maglogiannis

Download or read book Artificial Intelligence: Theories, Models and Applications written by Ilias Maglogiannis and published by Springer. This book was released on 2012-05-26 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 7th Hellenic Conference on Artificial Intelligence, SETN 2012, held in Lamia, Greece, in May 2012. The 47 contributions included in this volume were carefully reviewed and selected from 81 submissions. They deal with emergent topics of artificial intelligence and come from the SETN main conference as well as from the following special sessions on advancing translational biological research through the incorporation of artificial intelligence methodologies; artificial intelligence in bioinformatics; intelligent annotation of digital content; intelligent, affective, and natural interfaces; and unified multimedia knowledge representation and processing.

Rollout, Policy Iteration, and Distributed Reinforcement Learning

Download Rollout, Policy Iteration, and Distributed Reinforcement Learning PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 1886529078
Total Pages : 498 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Rollout, Policy Iteration, and Distributed Reinforcement Learning by : Dimitri Bertsekas

Download or read book Rollout, Policy Iteration, and Distributed Reinforcement Learning written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2021-08-20 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to develop in greater depth some of the methods from the author's Reinforcement Learning and Optimal Control recently published textbook (Athena Scientific, 2019). In particular, we present new research, relating to systems involving multiple agents, partitioned architectures, and distributed asynchronous computation. We pay special attention to the contexts of dynamic programming/policy iteration and control theory/model predictive control. We also discuss in some detail the application of the methodology to challenging discrete/combinatorial optimization problems, such as routing, scheduling, assignment, and mixed integer programming, including the use of neural network approximations within these contexts. The book focuses on the fundamental idea of policy iteration, i.e., start from some policy, and successively generate one or more improved policies. If just one improved policy is generated, this is called rollout, which, based on broad and consistent computational experience, appears to be one of the most versatile and reliable of all reinforcement learning methods. In this book, rollout algorithms are developed for both discrete deterministic and stochastic DP problems, and the development of distributed implementations in both multiagent and multiprocessor settings, aiming to take advantage of parallelism. Approximate policy iteration is more ambitious than rollout, but it is a strictly off-line method, and it is generally far more computationally intensive. This motivates the use of parallel and distributed computation. One of the purposes of the monograph is to discuss distributed (possibly asynchronous) methods that relate to rollout and policy iteration, both in the context of an exact and an approximate implementation involving neural networks or other approximation architectures. Much of the new research is inspired by the remarkable AlphaZero chess program, where policy iteration, value and policy networks, approximate lookahead minimization, and parallel computation all play an important role.

Reinforcement Learning

Download Reinforcement Learning PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642276458
Total Pages : 653 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning by : Marco Wiering

Download or read book Reinforcement Learning written by Marco Wiering and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

Reinforcement Learning, second edition

Download Reinforcement Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262352702
Total Pages : 549 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton

Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces

Download An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030983161
Total Pages : 160 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces by : Sergei Pereverzyev

Download or read book An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces written by Sergei Pereverzyev and published by Springer Nature. This book was released on 2022-05-17 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides an in-depth exploration of statistical learning with reproducing kernels, an active area of research that can shed light on trends associated with deep neural networks. The author demonstrates how the concept of reproducing kernel Hilbert Spaces (RKHS), accompanied with tools from regularization theory, can be effectively used in the design and justification of kernel learning algorithms, which can address problems in several areas of artificial intelligence. Also provided is a detailed description of two biomedical applications of the considered algorithms, demonstrating how close the theory is to being practically implemented. Among the book’s several unique features is its analysis of a large class of algorithms of the Learning Theory that essentially comprise every linear regularization scheme, including Tikhonov regularization as a specific case. It also provides a methodology for analyzing not only different supervised learning problems, such as regression or ranking, but also different learning scenarios, such as unsupervised domain adaptation or reinforcement learning. By analyzing these topics using the same theoretical framework, rather than approaching them separately, their presentation is streamlined and made more approachable. An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces is an ideal resource for graduate and postgraduate courses in computational mathematics and data science.

Recent Advances in Reinforcement Learning

Download Recent Advances in Reinforcement Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540897224
Total Pages : 292 pages
Book Rating : 4.5/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Reinforcement Learning by : Sertan Girgin

Download or read book Recent Advances in Reinforcement Learning written by Sertan Girgin and published by Springer. This book was released on 2008-11-27 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inthesummerof2008,reinforcementlearningresearchersfromaroundtheworld gathered in the north of France for a week of talks and discussions on reinfor- ment learning, on how it could be made more e?cient, applied to a broader range of applications, and utilized at more abstract and symbolic levels. As a participant in this 8th European Workshop on Reinforcement Learning, I was struck by both the quality and quantity of the presentations. There were four full days of short talks, over 50 in all, far more than there have been at any p- vious meeting on reinforcement learning in Europe, or indeed, anywhere else in the world. There was an air of excitement as substantial progress was reported in many areas including Computer Go, robotics, and ?tted methods. Overall, the work reported seemed to me to be an excellent, broad, and representative sample of cutting-edge reinforcement learning research. Some of the best of it is collected and published in this volume. The workshopandthe paperscollectedhere provideevidence thatthe ?eldof reinforcement learning remains vigorous and varied. It is appropriate to re?ect on some of the reasons for this. One is that the ?eld remains focused on a pr- lem — sequential decision making — without prejudice as to solution methods. Another is the existence of a common terminology and body of theory.

Artificial Intelligence Research and Development

Download Artificial Intelligence Research and Development PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 1614994528
Total Pages : 308 pages
Book Rating : 4.6/5 (149 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Research and Development by : L. Museros

Download or read book Artificial Intelligence Research and Development written by L. Museros and published by IOS Press. This book was released on 2014-10-10 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents 34 original papers accepted for presentation at the 17th International Conference of the Catalan Association for Artificial Intelligence (CCIA 2014), held in October 2014 in Barcelona, Spain. The Catalan Association for Artificial Intelligence (ACIA), was created in 1994 as a non-profit association to promote cooperation among researchers from the Catalan-speaking artificial intelligence research community. Conferences are now held annually throughout the Catalan-speaking countries. The papers in this volume have been organized around different topics, providing a representative sample of the current state-of-the-art in the Catalan artificial intelligence community and of the collaboration between ACIA members and the worldwide AI community. The book will be of interest to all those working in the field of artificial intelligence.

Markov Decision Processes in Artificial Intelligence

Download Markov Decision Processes in Artificial Intelligence PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118620100
Total Pages : 367 pages
Book Rating : 4.1/5 (186 download)

DOWNLOAD NOW!


Book Synopsis Markov Decision Processes in Artificial Intelligence by : Olivier Sigaud

Download or read book Markov Decision Processes in Artificial Intelligence written by Olivier Sigaud and published by John Wiley & Sons. This book was released on 2013-03-04 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as reinforcement learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in artificial intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, reinforcement learning, partially observable MDPs, Markov games and the use of non-classical criteria). It then presents more advanced research trends in the field and gives some concrete examples using illustrative real life applications.

Recent Advances in Reinforcement Learning

Download Recent Advances in Reinforcement Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642299466
Total Pages : 357 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Reinforcement Learning by : Scott Sanner

Download or read book Recent Advances in Reinforcement Learning written by Scott Sanner and published by Springer. This book was released on 2012-05-19 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised and selected papers of the 9th European Workshop on Reinforcement Learning, EWRL 2011, which took place in Athens, Greece in September 2011. The papers presented were carefully reviewed and selected from 40 submissions. The papers are organized in topical sections online reinforcement learning, learning and exploring MDPs, function approximation methods for reinforcement learning, macro-actions in reinforcement learning, policy search and bounds, multi-task and transfer reinforcement learning, multi-agent reinforcement learning, apprenticeship and inverse reinforcement learning and real-world reinforcement learning.

Intelligent Computing Methodologies

Download Intelligent Computing Methodologies PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319422979
Total Pages : 879 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Computing Methodologies by : De-Shuang Huang

Download or read book Intelligent Computing Methodologies written by De-Shuang Huang and published by Springer. This book was released on 2016-07-11 with total page 879 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book - in conjunction with the double volume set LNCS 9771 and LNCS 9772 - constitutes the refereed proceedings of the 12th International Conference on Intelligent Computing, ICIC 2016, held in Lanzhou, China, in August 2016. The 221 full papers and 15 short papers of the three proceedings volumes were carefully reviewed and selected from 639 submissions. The papers are organized in topical sections such as signal processing and image processing; information security, knowledge discovery, and data mining; systems biology and intelligent computing in computational biology; intelligent computing in scheduling; information security; advances in swarm intelligence: algorithms and applications; machine learning and data analysis for medical and engineering applications; evolutionary computation and learning; independent component analysis; compressed sensing, sparse coding; social computing; neural networks; nature inspired computing and optimization; genetic algorithms; signal processing; pattern recognition; biometrics recognition; image processing; information security; virtual reality and human-computer interaction; healthcare informatics theory and methods; artificial bee colony algorithms; differential evolution; memetic algorithms; swarm intelligence and optimization; soft computing; protein structure and function prediction; advances in swarm intelligence: algorithms and applications; optimization, neural network, and signal processing; biomedical informatics and image processing; machine learning; knowledge discovery and natural language processing; nature inspired computing and optimization; intelligent control and automation; intelligent data analysis and prediction; computer vision; knowledge representation and expert system; bioinformatics.

Download  PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 :
Total Pages : 7289 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis by :

Download or read book written by and published by IOS Press. This book was released on with total page 7289 pages. Available in PDF, EPUB and Kindle. Book excerpt:

ECAI 2006

Download ECAI 2006 PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 1607501899
Total Pages : 892 pages
Book Rating : 4.6/5 (75 download)

DOWNLOAD NOW!


Book Synopsis ECAI 2006 by : G. Brewka

Download or read book ECAI 2006 written by G. Brewka and published by IOS Press. This book was released on 2006-08-10 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the summer of 1956, John McCarthy organized the famous Dartmouth Conference which is now commonly viewed as the founding event for the field of Artificial Intelligence. During the last 50 years, AI has seen a tremendous development and is now a well-established scientific discipline all over the world. Also in Europe AI is in excellent shape, as witnessed by the large number of high quality papers in this publication. In comparison with ECAI 2004, there’s a strong increase in the relative number of submissions from Distributed AI / Agents and Cognitive Modelling. Knowledge Representation & Reasoning is traditionally strong in Europe and remains the biggest area of ECAI-06. One reason the figures for Case-Based Reasoning are rather low is that much of the high quality work in this area has found its way into prestigious applications and is thus represented under the heading of PAIS.

Kernel-based Reinforcement Learning

Download Kernel-based Reinforcement Learning PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 21 pages
Book Rating : 4.:/5 (793 download)

DOWNLOAD NOW!


Book Synopsis Kernel-based Reinforcement Learning by : Dirk Ormoneit

Download or read book Kernel-based Reinforcement Learning written by Dirk Ormoneit and published by . This book was released on 1999 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Approximate Dynamic Programming

Download Approximate Dynamic Programming PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470182954
Total Pages : 487 pages
Book Rating : 4.4/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Approximate Dynamic Programming by : Warren B. Powell

Download or read book Approximate Dynamic Programming written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2007-10-05 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.